Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The structure of tensor products of semilattices with zero


Authors: G. Grätzer, H. Lakser and R. Quackenbush
Journal: Trans. Amer. Math. Soc. 267 (1981), 503-515
MSC: Primary 06B05
DOI: https://doi.org/10.1090/S0002-9947-1981-0626486-8
MathSciNet review: 626486
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ A$ and $ B$ are finite lattices, then the tensor product $ C$ of $ A$ and $ B$ in the category of join semilattices with zero is a lattice again. The main result of this paper is the description of the congruence lattice of $ C$ as the free product (in the category of bounded distributive lattices) of the congruence lattice of $ A$ and the congruence lattice of $ B$. This provides us with a method of constructing finite subdirectly irreducible (resp., simple) lattices: if $ A$ and $ B$ are finite subdirectly irreducible (resp., simple) lattices then so is their tensor product. Another application is a result of E. T. Schmidt describing the congruence lattice of a bounded distributive extension of $ {M_3}$.


References [Enhancements On Off] (What's this?)

  • [1] J. Anderson and N. Kimura, The tensor product of semilattices, Semigroup Forum 16 (1978), 83-88. MR 497074 (80a:20072)
  • [2] G. Fraser, The tensor product of distributive lattices, Proc. Edinburgh Math. Soc. (2) 20 (1976), 121-131. MR 0419320 (54:7342)
  • [3] -, The semilattice tensor product of distributive lattices, Trans. Amer. Math. Soc. 217 (1976), 183-194. MR 0392728 (52:13545)
  • [4] -, The tensor product of semilattices, Algebra Universalis 8 (1978), 1-3. MR 0450145 (56:8442)
  • [5] -, Tensor products of semilattices and distributive lattices, Semigroup Forum 13 (1976), 178-184. MR 0427177 (55:212)
  • [6] G. Grätzer, Lattice theory: First concepts and distributive lattices, Freeman, San Francisco, Calif., 1971. MR 0321817 (48:184)
  • [7] -, General lattice theory, Pure and Appl. Math. Ser., Academic Press, New York; Mathematische Reihe, Band 52, Birkhäuser Verlag, Basel; Akademie Verlag, Berlin, 1978. MR 504338 (80c:06001a)
  • [8] E. T. Schmidt, Lattices generated by partial lattices, Lattice Theory (Proc. Colloq., Szeged, 1974), Colloq. Math. Soc. János Bolyai, Vol. 14, North-Holland, Amsterdam, 1974, pp. 343-353. MR 0439701 (55:12587)
  • [9] Z. Shmuely, The structure of Galois connections, Pacific J. Math. 54 (1974), 209-225. MR 0376455 (51:12630)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06B05

Retrieve articles in all journals with MSC: 06B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0626486-8
Keywords: Semilattice, lattice, tensor product, congruence lattice, simple, subdirectly irreducible
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society