Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Morse theory by perturbation methods with applications to harmonic maps


Author: K. Uhlenbeck
Journal: Trans. Amer. Math. Soc. 267 (1981), 569-583
MSC: Primary 58E05; Secondary 49F15, 58E20
DOI: https://doi.org/10.1090/S0002-9947-1981-0626490-X
MathSciNet review: 626490
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There are many interesting variational problems for which the Palais-Smale condition cannot be verified. In cases where the Palais-Smale condition can be verified for an approximating integral, and the critical points converge, a Morse theory is valid. This theory applies to a class of variational problems consisting of the energy integral for harmonic maps with a lower order potential.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, The $ {L_p}$ approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa 13 (1959), 405-448. MR 0125306 (23:A2609)
  • [2] J. Eells, Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 0164306 (29:1603)
  • [3] R. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Math.., vol. 471, Springer-Verlag, Berlin and New York, 1975. MR 0482822 (58:2872)
  • [4] P. Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967), 673-687. MR 0214004 (35:4856)
  • [5] C. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Berlin and New York, 1966. MR 0202511 (34:2380)
  • [6] J. Moser, A new proof of de Giorgi's theorem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-468. MR 0170091 (30:332)
  • [7] R. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16. MR 0189028 (32:6455)
  • [8] -, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340. MR 0158410 (28:1633)
  • [9] R. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-171. MR 0158411 (28:1634)
  • [10] R. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. MR 0259955 (41:4584)
  • [11] -, Foundations of global non-linear analysis, Benjamin, New York, 1968. MR 0248880 (40:2130)
  • [12] J. Schwartz, Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307-315. MR 0166796 (29:4069)
  • [13] S. Smale, Morse theory and a non-linear generalization of the Dirichlet problem, Ann. of Math. 80 (1964), 382-396. MR 0165539 (29:2820)
  • [14] A. Tromba, A general approach to Morse theory, J. Differential Geom. 12 (1977), 47-86. MR 0464304 (57:4237)
  • [15] K. Uhlenbeck, Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972), 430-445. MR 0377979 (51:14148)
  • [16] -, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. MR 0474389 (57:14031)
  • [17] -, Harmonic maps; A direct method in the calculus of variations, Bull. Amer. Math. Soc. 76 (1970), 1082-1087. MR 0264714 (41:9305)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E05, 49F15, 58E20

Retrieve articles in all journals with MSC: 58E05, 49F15, 58E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0626490-X
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society