Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some universal sets of terms


Author: Walter Taylor
Journal: Trans. Amer. Math. Soc. 267 (1981), 595-607
MSC: Primary 08A40; Secondary 03D35, 04A05
DOI: https://doi.org/10.1090/S0002-9947-1981-0626492-3
MathSciNet review: 626492
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For every $ \Pi _2^1$ class of cardinals containing 0 and $ 1$, there exists a finite set $ T$ of terms, such that $ X$ is precisely the class of cardinals in which $ T$ is universal.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Addison, L. Henkin and A. Tarski (Editors), The theory of models, Proc. 1963 Sympos. (Berkeley, Calif.), North-Holland, Amsterdam, 1965. MR 0195680 (33:3878)
  • [2] J. T. Baldwin and Joel Berman, Elementary classes of varieties (to appear). MR 658563 (83h:08011)
  • [3] S. Banach, Sur un théorème de M. Sierpiński, Fund. Math. 25 (1935), 5-6.
  • [4] C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.
  • [5] W. Craig and R. L. Vaught, Finite axiomatizability using additional predicates, J. Symbolic Logic 23 (1958), 289-308. MR 0106175 (21:4909)
  • [6] A. Ehrenfeucht, Elementary theories with models without automorphisms, The Theory of Models, North-Holland, Amsterdam, 1965, pp. 70-76. MR 0209133 (35:37)
  • [7] A. Ehrenfeucht, S. Fajtlowicz, J. Malitz and J. Mycielski, Some problems on the universality of words in groups, Algebra Universalis 11 (1980), 261-263. MR 588219 (81k:20045)
  • [8] A. Ehrenfeucht and D. M. Silberger, Decomposing a transformation with an involution, Algebra Universalis 7 (1977), 179-190. MR 0437341 (55:10273)
  • [9] -, Universal and point-universal terms, Bull. Acad. Polon. Sci. Sér. Sci. Math. 24 (1976), 399-402. MR 0409690 (53:13442)
  • [10] -, Universal terms of the form $ {B^n}{A^m}$, Algebra Universalis 10 (1980), 96-116. MR 552160 (81c:08012)
  • [11] P. Erdös, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196. MR 0202613 (34:2475)
  • [12] P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489. MR 0081864 (18:458a)
  • [13] R. Freese and R. McKenzie, Residually small varieties with modular congruence lattices, Trans. Amer. Math. Soc. 264 (1981), 419-430. MR 603772 (83d:08012a)
  • [14] S. J. Garland, Second-order cardinal characterizability, Proc. Sympos. Pure Math., vol. 13, part 2, Amer. Math. Soc., Providence, R. I., 1974, pp. 127-146. MR 0416919 (54:4982)
  • [15] J. Isbell, On the problem of universal terms, Bull. Acad. Polon. Sci. Sér. Sci. Math. 14 (1966), 593-595. MR 0207567 (34:7382)
  • [16] J. R. Isbell, M. I. Klun and S. H. Schanuel, Affine parts of algebraic theories. I, J. Algebra 44 (1977), 1-8. MR 0429542 (55:2555)
  • [17] B. Jónsson, The unique factorization problem for finite relational structures, Colloq. Math. 14 (1966), 1-32. MR 0191860 (33:87)
  • [18] -, Topics in universal algebra, Lecture Notes in Math., vol. 250, Springer-Verlag, Berlin, 1972. MR 0345895 (49:10625)
  • [19] S. C. Kleene, Finite axiomatizability of theories in the predicate calculus using additional predicate symbols, Mem. Amer. Math. Soc. No. 10 (1952), 27-68. MR 0051186 (14:439d)
  • [20] A. Kostinsky and R. McKenzie, Notices Amer. Math. Soc. 15 (1968), 389; Abstract #68T-302.
  • [21] A. Kostinsky, Some problems for rings and lattices within the domain of general algebra, Ph.D. Thesis, Berkeley, Calif., 1969.
  • [22] K. Kunen, Indescribability and the continuum, Proc. Sympos. Pure Math., vol. 13, part 1, Amer. Math. Soc., Providence, R. I., 1971, pp. 199-203. MR 0282829 (44:63)
  • [23] W. A. Lampe and W. Taylor, Simple algebras in varieties, Algebra Universalis (to appear). MR 634414 (83e:08012)
  • [24] J. T. Loats, Hopfian Boolean algebras of power $ \leqslant $ continuum, Proc. Amer. Math. Soc. 77 (1979), 186-190. MR 542082 (80h:06010)
  • [25] J. T. Loats and M. Rubin, Boolean algebras without nontrivial endomorphisms exist in every uncountable cardinality, Proc. Amer. Math. Soc. 72 (1978), 346-351. MR 507336 (80f:03071)
  • [26] G. G. Lorentz, The thirteenth problem of Hilbert, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R. I., 1976, pp. 419-430. MR 0507425 (58:22439)
  • [27] J. Łoś, Un théorème sur les superpositions des fonctions définies dans les ensembles arbitraires, Fund. Math. 37 (1950), 84-86. MR 0041202 (12:811d)
  • [28] R. McKenzie, On elementary types of symmetric groups, Algebra Universalis 1 (1971), 13-20. MR 0286643 (44:3852)
  • [29] -, On semigroups whose proper subsemigroups have lesser power, Algebra Universalis 1 (1971), 21-25. MR 0292979 (45:2060)
  • [30] R. McKenzie and S. Shelah, The cardinals of simple models for universal theories, Proc. Sympos. Pure Math., vol. 25, Amer. Math. Soc., Providence, R. I., 1971, pp. 53-74. MR 0360261 (50:12711)
  • [31] G. McNulty, The decision problem for equational bases of algebras, Ann. Math. Logic 19 (1976), 193-259. MR 0432440 (55:5428)
  • [32] D. Monk, On pseudo-simple universal algebras, Proc. Amer. Math. Soc. 13 (1962), 543-546. MR 0144840 (26:2381)
  • [33] M. Morley, Omitting classes of elements, The Theory of Models, North-Holland, Amsterdam, 1965, pp. 265-273. MR 0201305 (34:1189)
  • [34] J. Myhill et al., Advanced Problems 6244, and solution, Amer. Math. Monthly 85 (1978), 828, and solution, 87 (1980), 676-678. MR 1539504
  • [35] P. Perkins, Unsolvable problems for equational theories, Notre Dame J. Formal Logic 8 (1967), 175-185. MR 0236012 (38:4310)
  • [36] A. G. Pinus, Elementary definability of symmetry groups, Algebra Universalis 3 (1973), 59-66. MR 0337594 (49:2363)
  • [37] E. Redi, Representation of Menger systems by multiplace endomorphisms, Učen. Zap. Tartu Gos. Univ. 277 (1971), 47-51. MR 0371789 (51:8006)
  • [38] S. Shelah, The first order theory of permutation groups, Israel J. Math. 14 (1973), 149-162; Erratum, ibid. 15 (1973), 437-441. MR 0416909 (54:4972)
  • [39] -, Notes on combinatorial set theory, Israel J. Math. 14 (1973), 262-277. MR 0327522 (48:5864)
  • [40] -, Refuting Ehrenfeucht conjecture on rigid models, Israel J. Math. 25 (1976), 273-286. MR 0485326 (58:5173)
  • [41] -, On a problem of Kurosh, Jónsson groups, and applications, Word Problems, Decision Problems and the Burnside Problem in Group Theory. II (Adjan, Boone and Higman, Editors) (to appear).
  • [42] W. Sierpiński, Sur les suites infinies de fonctions définies dans les ensembles quelconques, Fund. Math. 24 (1934), 209-212.
  • [43] D. M. Silberger, When is a term point-universal?, Algebra Universalis 10 (1980), 135-154. MR 560137 (81d:08007)
  • [44] -, Universal terms of complexity three, Algebra Universalis (to appear). MR 602024 (82b:08006)
  • [45] -, $ {B^n}{A^m}$ is universal iff point-universal, Algebra Universalis (to appear). MR 624299 (82h:20082)
  • [46] A. Tarski, A. Mostowski and R. Robinson, Undecidable theories, North-Holland, Amsterdam, 1953, 1968, 1971. MR 0058532 (15:384h)
  • [47] W. Taylor, Residually small varieties, Algebra Universalis 2 (1972), 33-53. MR 0314726 (47:3278)
  • [48] -, Equational logic, Houston J. Math. Survey Issue, 1979, iii + 83 pp. MR 546853 (80j:03042)
  • [49] -, Laws obeyed by topological algebras-extending results of Hopf and Adams, J. Pure Appl. Algebra (to appear). MR 609272 (82h:55010)
  • [50] -, Abstracts Amer. Math. Soc. 1 (1980), 218, 390; Abstracts #80T-A61, #80T-E57.
  • [51] M. L. Valente, Sobre a univeralidade de palavras para grupos simétricos, MS Thesis, Florianópolis, 1979.
  • [52] A. G. Vitushkin, On representation of functions by means of superpositions, and related topics, Enseign. Math. 23 (1977), 255-320. MR 0499036 (58:17008)
  • [53] P. Winkler, Polynomial hyperforms (to appear). MR 710002 (86f:08006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 08A40, 03D35, 04A05

Retrieve articles in all journals with MSC: 08A40, 03D35, 04A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0626492-3
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society