Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Involutions on Klein spaces $ M(p,\,q)$


Author: Paik Kee Kim
Journal: Trans. Amer. Math. Soc. 268 (1981), 377-409
MSC: Primary 57N10; Secondary 57S25
DOI: https://doi.org/10.1090/S0002-9947-1981-0632535-3
MathSciNet review: 632535
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Klein spaces $ M(p,\,q)$ are defined (up to homeomorphisms) to be the class of closed, orientable, irreducible $ 3$-manifolds with finite fundamental groups, in which a Klein bottle can be embedded. Their fundamental groups act freely on the $ 3$-sphere $ {S^3}$ in the natural way. We obtain a complete classification of the PL involutions on Klein spaces $ M(p,\,q)$. It can be applied to the study of some transformation group actions on $ {S^3}$ and double branched coverings of $ {S^3}$.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [2] E. M. Brown, Unknotting in $ {M^2} \times I$, Trans. Amer. Math. Soc. 123 (1966), 480-505. MR 0198482 (33:6640)
  • [3] P. E. Conner, Concerning the action of a finite group, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 349-351. MR 0079272 (18:61a)
  • [4] D. B. A. Epstein, Finite presentations of groups and $ 3$-manifolds, Quart. J. Math. Oxford Ser. (2) 12 (1961), 205-212. MR 0144321 (26:1867)
  • [5] -, Curves on $ 2$-manifolds and isotopies, Acta Math. 155 (1966), 83-107.
  • [6] B. Evans and J. Maxwell, Quaternion actions on $ {S^3}$ (preprint).
  • [7] E. E. Floyd, On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952), 138-147. MR 0046039 (13:673f)
  • [8] J. Hempel, $ 3$-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N.J., 1976. MR 0415619 (54:3702)
  • [9] P. K. Kim, PL involutions on lens spaces and other $ 3$-manifolds, Proc. Amer. Math. Soc. 44 (1974), 467-473. MR 0375363 (51:11558)
  • [10] -, Periodic homeomorphisms of the $ 3$-sphere and related spaces, Michigan Math. J. 21 (1974), 1-6. MR 0350739 (50:3231)
  • [11] -, PL involutions on the nonorientable $ 2$-sphere bundle over $ {S^1}$, Proc. Amer. Math. Soc. 55 (1976), 449-452. MR 0394717 (52:15516)
  • [12] -, Cyclic actions on lens spaces, Trans. Amer. Math. Soc. 237 (1978), 121-144. MR 479366 (80m:57038)
  • [13] -, Some $ 3$-manifolds which admit Klein bottles, Trans. Amer. Math. Soc. 244 (1978), 299-312. MR 506621 (80k:57017)
  • [14] P. K. Kim and J. L. Tollefson, PL involutions of fibered $ 3$-manifolds, Trans. Amer. Math. Soc. 232 (1977), 221-237. MR 0454981 (56:13223)
  • [15] -, Splitting the PL involutions on nonprime $ 3$-manifolds, Michigan Math. J. 27 (1980), 259-274. MR 584691 (81m:57007)
  • [16] K. W. Kwun, Sense preserving PL involutions of some lens spaces, Michigan Math. J. 20 (1973), 73-77. MR 0310865 (46:9963)
  • [17] K. W. Kwun and J. L. Tollefson, PL involutions of $ {S^1} \times {S^1} \times {S^1}$, Trans. Amer. Math. Soc. 203 (1975), 97-106. MR 0370634 (51:6861)
  • [18] -, Extending a PL involution of the interior of a compact manifold, Amer. J. Math. 99 (1977), 995-1001. MR 0470966 (57:10709)
  • [19] G. R. Livesay, Involutions with two fixed points on the three-sphere, Ann. of Math. (2) 78 (1963), 582-593. MR 0155323 (27:5257)
  • [20] J. Milnor, Groups which act on $ {S^n}$ without fixed points, Amer. J. Math. 79 (1957), 623-630. MR 0090056 (19:761d)
  • [21] W. Mangler, Die Klassen von Topologischen Abbildungen einer Geschlossenen Flächen auf sich, Math. Z. 44 (1939), 541-554. MR 1545786
  • [22] R. Myers, Free involutions on lens spaces (preprint). MR 608603 (82g:57015)
  • [23] M. A. Natsheh, Piecewise linear involutions on $ {P^2} \times {S^1}$, Thesis, Michigan State Univ., 1974.
  • [24] P. M. Rice, Free actions of $ {Z_4}$ on $ {S^3}$, Duke Math. J. 36 (1969), 749-751. MR 0248814 (40:2064)
  • [25] G. X. Ritter, Free actions of $ {Z_8}$ on $ {S^3}$, Trans. Amer. Math. Soc. 181 (1973), 195-212. MR 0321078 (47:9611)
  • [26] J. H. Rubinstein, On $ 3$-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129-137. MR 531972 (80f:57004)
  • [27] H. Schubert, Knoten and Vollringe, Acta. Math. 90 (1953), 131-286. MR 0072482 (17:291d)
  • [28] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-283. MR 1555366
  • [29] J. Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12-19. MR 0121796 (22:12526)
  • [30] -, On fibering certain $ 3$-manifolds, Topology of $ 3$-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 95-100.
  • [31] J. L. Tollefson, Involutions on $ {S^1} \times {S^2}$ and other $ 3$-manifolds, Trans. Amer. Math. Soc. 183 (1973), 139-152. MR 0326738 (48:5081)
  • [32] -, A $ 3$-manifold admitting a unique periodic PL map, Michigan Math. J. 21 (1974), 7-12. MR 0350740 (50:3232)
  • [33] F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 0224099 (36:7146)
  • [34] -, Über Involutionen der $ 3$-sphäre, Topology 8 (1969), 81-92. MR 0236916 (38:5209)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N10, 57S25

Retrieve articles in all journals with MSC: 57N10, 57S25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0632535-3
Keywords: $ 3$-manifolds, involutions
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society