Probability and interpolation

Authors:
G. G. Lorentz and R. A. Lorentz

Journal:
Trans. Amer. Math. Soc. **268** (1981), 477-486

MSC:
Primary 41A05; Secondary 05B20, 15A52, 60C05

MathSciNet review:
632539

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An matrix with ones and zeros, which satisfies the Pólya condition, may be regular and singular for Birkhoff interpolation. We prove that for random distributed ones, is singular with probability that converges to one if , . Previously, this was known only if . For constant and , the probability is asymptotically at least .

**[1]**K. Atkinson and A. Sharma,*A partial characterization of poised Hermite-Birkhoff interpolation problems*, SIAM J. Numer. Anal.**6**(1969), 230–235. MR**0264828****[2]**George David Birkhoff,*General mean value and remainder theorems with applications to mechanical differentiation and quadrature*, Trans. Amer. Math. Soc.**7**(1906), no. 1, 107–136. MR**1500736**, 10.1090/S0002-9947-1906-1500736-1**[3]**Wassily Hoeffding,*Probability inequalities for sums of bounded random variables*, J. Amer. Statist. Assoc.**58**(1963), 13–30. MR**0144363****[4]**Samuel Karlin and John M. Karon,*Poised and non-poised Hermite-Birkhoff interpolation*, Indiana Univ. Math. J.**21**(1971/72), 1131–1170. MR**0315328****[5]**J. H. B. Kemperman,*Moment problems for sampling without replacement. I*, Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math.**35**(1973), 149–164. MR**0345259****[6]**G. G. Lorentz,*Birkhoff interpolation and the problem of free matrices*, J. Approximation Theory**6**(1972), 283–290. Collection of articles dedicated to J. L. Walsh on his 75th birthday, VII. MR**0340889****[7]**G. G. Lorentz,*The Birkhoff interpolation problem: new methods and results*, Linear operators and approximation, II (Proc. Conf., Math. Res. Inst., Oberwolfach, 1974) Birkhäuser, Basel, 1974, pp. 481–501. Internat. Ser. Numer. Math., Vol. 25. MR**0393939****[8]**G. G. Lorentz,*Coalescence of matrices, regularity and singularity of Birkhoff interpolation problems*, J. Approximation Theory**20**(1977), no. 2, 178–190. MR**0454452****[9]**G. G. Lorentz and S. D. Riemenschneider,*Recent progress in Birkhoff interpolation*, Approximation theory and functional analysis (Proc. Internat. Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977) North-Holland Math. Stud., vol. 35, North-Holland, Amsterdam-New York, 1979, pp. 187–236. MR**553421****[10]**G. G. Lorentz and S. D. Riemenschneider,*Probabilistic approach to Schoenberg’s problem in Birkhoff interpolation*, Acta Math. Acad. Sci. Hungar.**33**(1979), no. 1-2, 127–135. Special issue dedicated to George Alexits on the occasion of his 80th birthday. MR**515126**, 10.1007/BF01903387**[11]**Georg Gunther Lorentz and K. L. Zeller,*Birkhoff interpolation*, SIAM J. Numer. Anal.**8**(1971), 43–48. MR**0295529****[12]**Rudolph A. Lorentz,*Interpolation and probability*, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 595–600. MR**602775****[13]**I. J. Schoenberg,*On Hermite-Birkhoff interpolation*, J. Math. Anal. Appl.**16**(1966), 538–543. MR**0203307****[14]**R. J. Serfling,*Probability inequalities for the sum in sampling without replacement*, Ann. Statist.**2**(1974), 39–48. MR**0420967**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A05,
05B20,
15A52,
60C05

Retrieve articles in all journals with MSC: 41A05, 05B20, 15A52, 60C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0632539-0

Keywords:
Birkhoff interpolation,
Pólya matrix,
regularity and singularity,
coalescence of rows,
probability of singularity,
hypergeometric distribution

Article copyright:
© Copyright 1981
American Mathematical Society