Probability and interpolation
Authors:
G. G. Lorentz and R. A. Lorentz
Journal:
Trans. Amer. Math. Soc. 268 (1981), 477486
MSC:
Primary 41A05; Secondary 05B20, 15A52, 60C05
MathSciNet review:
632539
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An matrix with ones and zeros, which satisfies the Pólya condition, may be regular and singular for Birkhoff interpolation. We prove that for random distributed ones, is singular with probability that converges to one if , . Previously, this was known only if . For constant and , the probability is asymptotically at least .
 [1]
K.
Atkinson and A.
Sharma, A partial characterization of poised HermiteBirkhoff
interpolation problems, SIAM J. Numer. Anal. 6
(1969), 230–235. MR 0264828
(41 #9419)
 [2]
George
David Birkhoff, General mean value and remainder
theorems with applications to mechanical differentiation and
quadrature, Trans. Amer. Math. Soc.
7 (1906), no. 1,
107–136. MR
1500736, http://dx.doi.org/10.1090/S00029947190615007361
 [3]
Wassily
Hoeffding, Probability inequalities for sums of bounded random
variables, J. Amer. Statist. Assoc. 58 (1963),
13–30. MR
0144363 (26 #1908)
 [4]
Samuel
Karlin and John
M. Karon, Poised and nonpoised HermiteBirkhoff
interpolation, Indiana Univ. Math. J. 21 (1971/72),
1131–1170. MR 0315328
(47 #3877)
 [5]
J.
H. B. Kemperman, Moment problems for sampling without replacement.
I, Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math.
35 (1973), 149–164. MR 0345259
(49 #9997a)
 [6]
G.
G. Lorentz, Birkhoff interpolation and the problem of free
matrices, J. Approximation Theory 6 (1972),
283–290. Collection of articles dedicated to J. L. Walsh on his 75th
birthday, VII. MR 0340889
(49 #5639)
 [7]
G.
G. Lorentz, The Birkhoff interpolation problem: new methods and
results, Linear operators and approximation, II (Proc. Conf., Math.
Res. Inst., Oberwolfach, 1974) Birkhäuser, Basel, 1974,
pp. 481–501. Internat. Ser. Numer. Math., Vol. 25. MR 0393939
(52 #14746)
 [8]
G.
G. Lorentz, Coalescence of matrices, regularity and singularity of
Birkhoff interpolation problems, J. Approximation Theory
20 (1977), no. 2, 178–190. MR 0454452
(56 #12703)
 [9]
G.
G. Lorentz and S.
D. Riemenschneider, Recent progress in Birkhoff interpolation,
Approximation theory and functional analysis (Proc. Internat. Sympos.
Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977)
NorthHolland Math. Stud., vol. 35, NorthHolland, AmsterdamNew York,
1979, pp. 187–236. MR 553421
(81a:41006)
 [10]
G.
G. Lorentz and S.
D. Riemenschneider, Probabilistic approach to Schoenberg’s
problem in Birkhoff interpolation, Acta Math. Acad. Sci. Hungar.
33 (1979), no. 12, 127–135. Special issue
dedicated to George Alexits on the occasion of his 80th birthday. MR 515126
(80f:41002), http://dx.doi.org/10.1007/BF01903387
 [11]
Georg
Gunther Lorentz and K.
L. Zeller, Birkhoff interpolation, SIAM J. Numer. Anal.
8 (1971), 43–48. MR 0295529
(45 #4595)
 [12]
Rudolph
A. Lorentz, Interpolation and probability, Approximation
theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic
Press, New YorkLondon, 1980, pp. 595–600. MR 602775
(82f:41007)
 [13]
I.
J. Schoenberg, On HermiteBirkhoff interpolation, J. Math.
Anal. Appl. 16 (1966), 538–543. MR 0203307
(34 #3160)
 [14]
R.
J. Serfling, Probability inequalities for the sum in sampling
without replacement, Ann. Statist. 2 (1974),
39–48. MR
0420967 (54 #8976)
 [1]
 K. Atkinson and A. Sharma, A partial characterization of poised HermiteBirkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230235. MR 0264828 (41:9419)
 [2]
 G. D. Birkhoff, General mean value and remainder theorems with applications to mechanical differentiation and integration, Trans. Amer. Math. Soc. 7 (1906), 107136. MR 1500736
 [3]
 W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 1330. MR 0144363 (26:1908)
 [4]
 S. Karlin and J. M. Karon, Poised and nonpoised HermiteBirkhoff interpolations, Indiana Univ. Math. J. 21 (1972), 11311170. MR 0315328 (47:3877)
 [5]
 J. H. B. Kemperman, Moment problems for sampling without replacement, Indag. Math. 35 (1973), 149188. MR 0345259 (49:9997a)
 [6]
 G. G. Lorentz, Birkhoff interpolation and the problem of free matrices, J. Approx. Theory 6 (1972), 283290. MR 0340889 (49:5639)
 [7]
 , "The Birkhoff interpolation problem: New methods and results" in Linear operators and approximation, II edited by P. L. Butzer and B. Sz.Nagy, ISMN No. 25, Birkhäuser Verlag, Basel, 1974, pp. 481501. MR 0393939 (52:14746)
 [8]
 , Coalescence of matrices, regularity and singularity of Birkhoff interpolation problems, J. Approx. Theory 20 (1977), 178190. MR 0454452 (56:12703)
 [9]
 G. G. Lorentz and S. D. Riemenschneider, "Recent progress in Birkhoff interpolation" in Approximation theory and functional analysis edited by J. B. Prolla, NorthHolland, Amsterdam, 1979, pp. 187236. MR 553421 (81a:41006)
 [10]
 , Probabilistic approach to Schoenberg's problem in Birkhoff interpolation theory, Acta Math. Acad. Sci. Hungar. 33 (1979), 127135. MR 515126 (80f:41002)
 [11]
 G. G. Lorentz and K. L. Zeller, Birkhoff interpolation, SIAM J. Numer. Anal. 8 (1971), 4348. MR 0295529 (45:4595)
 [12]
 R. A. Lorentz, "Interpolation and probability" in Approximation theory, III edited by E. W. Cheney, Academic Press, New York, 1980, pp. 595600. MR 602775 (82f:41007)
 [13]
 I. J. Schoenberg, On HermiteBirkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538543. MR 0203307 (34:3160)
 [14]
 R. J. Serfling, Probability inequalities for the sum in sampling without replacement, Ann. Statist. 2 (1974), 3948. MR 0420967 (54:8976)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
41A05,
05B20,
15A52,
60C05
Retrieve articles in all journals
with MSC:
41A05,
05B20,
15A52,
60C05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198106325390
PII:
S 00029947(1981)06325390
Keywords:
Birkhoff interpolation,
Pólya matrix,
regularity and singularity,
coalescence of rows,
probability of singularity,
hypergeometric distribution
Article copyright:
© Copyright 1981
American Mathematical Society
