Probability and interpolation

Authors:
G. G. Lorentz and R. A. Lorentz

Journal:
Trans. Amer. Math. Soc. **268** (1981), 477-486

MSC:
Primary 41A05; Secondary 05B20, 15A52, 60C05

DOI:
https://doi.org/10.1090/S0002-9947-1981-0632539-0

MathSciNet review:
632539

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An matrix with ones and zeros, which satisfies the Pólya condition, may be regular and singular for Birkhoff interpolation. We prove that for random distributed ones, is singular with probability that converges to one if , . Previously, this was known only if . For constant and , the probability is asymptotically at least .

**[1]**K. Atkinson and A. Sharma,*A partial characterization of poised Hermite-Birkhoff interpolation problems*, SIAM J. Numer. Anal.**6**(1969), 230-235. MR**0264828 (41:9419)****[2]**G. D. Birkhoff,*General mean value and remainder theorems with applications to mechanical differentiation and integration*, Trans. Amer. Math. Soc.**7**(1906), 107-136. MR**1500736****[3]**W. Hoeffding,*Probability inequalities for sums of bounded random variables*, J. Amer. Statist. Assoc.**58**(1963), 13-30. MR**0144363 (26:1908)****[4]**S. Karlin and J. M. Karon,*Poised and non-poised Hermite-Birkhoff interpolations*, Indiana Univ. Math. J.**21**(1972), 1131-1170. MR**0315328 (47:3877)****[5]**J. H. B. Kemperman,*Moment problems for sampling without replacement*, Indag. Math.**35**(1973), 149-188. MR**0345259 (49:9997a)****[6]**G. G. Lorentz,*Birkhoff interpolation and the problem of free matrices*, J. Approx. Theory**6**(1972), 283-290. MR**0340889 (49:5639)****[7]**-, "The Birkhoff interpolation problem: New methods and results" in*Linear operators and approximation*, II edited by P. L. Butzer and B. Sz.-Nagy, ISMN No. 25, Birkhäuser Verlag, Basel, 1974, pp. 481-501. MR**0393939 (52:14746)****[8]**-,*Coalescence of matrices, regularity and singularity of Birkhoff interpolation problems*, J. Approx. Theory**20**(1977), 178-190. MR**0454452 (56:12703)****[9]**G. G. Lorentz and S. D. Riemenschneider, "Recent progress in Birkhoff interpolation" in*Approximation theory and functional analysis*edited by J. B. Prolla, North-Holland, Amsterdam, 1979, pp. 187-236. MR**553421 (81a:41006)****[10]**-,*Probabilistic approach to Schoenberg's problem in Birkhoff interpolation theory*, Acta Math. Acad. Sci. Hungar.**33**(1979), 127-135. MR**515126 (80f:41002)****[11]**G. G. Lorentz and K. L. Zeller,*Birkhoff interpolation*, SIAM J. Numer. Anal.**8**(1971), 43-48. MR**0295529 (45:4595)****[12]**R. A. Lorentz, "Interpolation and probability" in*Approximation theory*, III edited by E. W. Cheney, Academic Press, New York, 1980, pp. 595-600. MR**602775 (82f:41007)****[13]**I. J. Schoenberg,*On Hermite-Birkhoff interpolation*, J. Math. Anal. Appl.**16**(1966), 538-543. MR**0203307 (34:3160)****[14]**R. J. Serfling,*Probability inequalities for the sum in sampling without replacement*, Ann. Statist.**2**(1974), 39-48. MR**0420967 (54:8976)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A05,
05B20,
15A52,
60C05

Retrieve articles in all journals with MSC: 41A05, 05B20, 15A52, 60C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0632539-0

Keywords:
Birkhoff interpolation,
Pólya matrix,
regularity and singularity,
coalescence of rows,
probability of singularity,
hypergeometric distribution

Article copyright:
© Copyright 1981
American Mathematical Society