Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Dror-Whitehead theorem in prohomotopy and shape theories

Author: S. Singh
Journal: Trans. Amer. Math. Soc. 268 (1981), 487-496
MSC: Primary 55P10; Secondary 55P55
MathSciNet review: 632540
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Many analogues of the classical Whitehead theorem from homotopy theory are now available in pro-homotopy and shape theories. E. Dror has significantly extended the homology version of the Whitehead theorem from the well-known simply connected case to the more general, for instance, nilpotent case. We prove a full analogue of Dror's theorems in pro-homotopy and shape theories. More specifically, suppose $ \underline f :\underline X \to \underline Y $ is a morphism in the pro-homotopy category of pointed and connected topological spaces which induces isomorphisms of the integral homology pro-groups. Then $ \underline f $ induces isomorphisms of the homotopy pro-groups, for instance, when $ \underline X $ and $ \underline Y $ are simple, nilpotent, complete, or $ \underline H $-objects; these notions are well known in homotopy theory and we have naturally extended them to pro-homotopy and shape theories.

References [Enhancements On Off] (What's this?)

  • [AM] M. Artin and B. Mazur, Étale homotopy, Lecture Notes in Math., vol. 100, Springer, Berlin and New York, 1969. MR 0245577 (39:6883)
  • [BK] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer, New York, 1972. MR 0365573 (51:1825)
  • [BO] K. Borsuk, Theory of shape, Monografie Mat., no. 59, PWN, Warsaw, 1975. MR 0418088 (54:6132)
  • [DR] E. Dror, A generalization of the Whitehead theorem, Lecture Notes in Math., vol. 249, Springer, Berlin and New York, 1971, pp. 13-22. MR 0350725 (50:3217)
  • [DS] J. Dydak and J. Segal, Shape theory, Lecture Notes in Math., vol. 688, Springer, Berlin and New York, 1978. MR 520227 (80h:54020)
  • [ED] D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., vol. 542, Springer, New York, 1976. MR 0428322 (55:1347)
  • [EH] B. Eckmann and P. Hilton, Group-like structures in general cattegories. I: Multiplications and comultiplications, Math. Ann. 145 (1962), 227-255. MR 0136642 (25:108)
  • [EW] D. A. Edwards, Étale homotopy theory and shape, Algebraic and Geometric Methods in Topology (edited by L. McAuley), Lecture Notes in Math., vol. 428, Springer, Berlin and New York, 1974, pp. 58-107. MR 0375295 (51:11491)
  • [GR] A. Grothendieck, Technique de decene . . . , Sém. Bourbaki, 12 année, 1959-60, Exp. 195, pp. 1-22. MR 2320488 (2008b:01007)
  • [HI] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland Math. Studies, North-Holland, Amsterdam; American Elsevier, New York, 1975. MR 0478146 (57:17635)
  • [HU] S. T. Hu, Homotopy theory, Academic Press, New York, 1959. MR 0106454 (21:5186)
  • [MA] S. Mardešić, On the Whitehead theorem in shape theory. I, II, Fund. Math. 91 (1976), 51-64; 93-103. MR 0407798 (53:11568)
  • [ML] S. Mac Lane, Homology, Springer, New York, 1975. MR 1344215 (96d:18001)
  • [MO] M. Moszyńska, The Whitehead theorem in the theory of shape, Fund. Math. 80 (1973), 221-263.
  • [MR] K. Morita, The Hurewicz and Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974), 246-258. MR 0372848 (51:9052)
  • [PO] M. M. Postnikov, Localization of topological spaces, Uspehi Mat. Nauk 32 (6) (1977), 117-181 = Russian Math. Surveys 32 (6) (1977), 121-184. MR 0515419 (58:24258)
  • [RA] M. Raussen, Hurewicz and Whitehead Theorems in pro-categories, Arch. Math. 30 (1978), 153-164. MR 0494090 (58:13021)
  • [SI$ _{1}$] S. Singh, Pro-homology and isomorphisms of pro-groups, J. Pure Appl. Algebra (to appear). MR 639574 (83a:20066)
  • [SI$ _{2}$] -, Mittag-Leffler for homotopy pro-groups of movable continua, Glas. Mat. Ser. III (to appear). MR 634301 (83e:55005)
  • [SP] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [ST] J. R. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170-181. MR 0175956 (31:232)
  • [WH] G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Math., vol. 61, Springer, New York, 1978. MR 516508 (80b:55001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P10, 55P55

Retrieve articles in all journals with MSC: 55P10, 55P55

Additional Information

Keywords: Pro-homotopy, shape, nilpotent spaces, homology pro-groups, homotopy pro-groups, $ s$-nilpotent continua, $ \underline H $-structures
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society