Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Dirac quantum fields on a manifold


Author: J. Dimock
Journal: Trans. Amer. Math. Soc. 269 (1982), 133-147
MSC: Primary 81E20; Secondary 46L60, 81E05
DOI: https://doi.org/10.1090/S0002-9947-1982-0637032-8
MathSciNet review: 637032
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On globally hyperbolic Lorentzian manifolds we construct field operators which satisfy the Dirac equation and have a causal anticommutator. Ambiguities in the construction are removed by formulating the theory in terms of $ {C^{\ast}}$ algebras of local observables. A generalized form of the Haag-Kastler axioms is verified.


References [Enhancements On Off] (What's this?)

  • [1] S. Avis and C. Isham, Quantum field theory and fibre bundles in a general space-time, Recent Developments in Gravitation (Levy and Deser, eds.), Plenum Press, New York, 1979.
  • [2] P. Bongaarts, The electron-positron field coupled to external electromagnetic potentials as an elementary $ {C^{\ast}}$-algebra theory, Ann. Physics 56 (1970), 108-139. MR 0260291 (41:4919)
  • [3] Y. Choquet-Bruhat, Hyperbolic differential equations on a manifold, Battelle Rencontres (DeWitt and Wheeler, eds.), Benjamin, New York, 1968. MR 0239299 (39:656)
  • [4] Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick, Analysis, manifolds, and physics, North-Holland, New York, 1977. MR 0467779 (57:7631)
  • [5] B. Dewitt, C. F. Hart and C. J. Isham, Topology and quantum field theory, preprint. MR 534588 (80e:81056)
  • [6] J. Dimock, Algebras of local observables on a manifold, Comm. Math. Phys. 77 (1980), 219-228. MR 594301 (82i:81071)
  • [7] S. Doplicher, R. Haag and J. Roberts, Fields, observables, and gauge transformations. I, II, Comm. Math. Phys. 13 (1969), 1; 15 (1969), 173. MR 0258394 (41:3041)
  • [8] R. Geroch, Spinor structure of space-times in general relativity. I, II, J. Math. Phys. 9 (1968), 1739; 11 (1970), 343. MR 0234703 (38:3019)
  • [9] -, The domain of dependence, J. Math. Phys. 11 (1970), 437. MR 0270697 (42:5585)
  • [10] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848. MR 0165864 (29:3144)
  • [11] S. Hawking and G. Ellis, The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. MR 0424186 (54:12154)
  • [12] P. Hajicek, Observables for quantum fields on curved backgrounds, Lecture Notes in Math., vol. 676, Springer-Verlag, Berlin, 1978, pp. 535-566. MR 519628 (81j:81079)
  • [13] C. Isham, Quantum field theory in curved space-time, Lecture Notes in Math., vol. 676, Springer-Verlag, Berlin, 1978, pp. 495-512. MR 519626 (81d:81037)
  • [14] -, Twisted quantum fields in a curved space-time, Proc. Roy. Soc. London Ser. A 362 (1978), 383. MR 0503525 (58:20257)
  • [15] B. Kay, Linear spin-zero quantum fields in external gravitational and scalar fields. I, II, Comm. Math. Phys. 62 (1978), 55; 71 (1980), 29.
  • [16] A. Lichnerowicz, Champs spinoriel et propagateurs, Bull. Soc. Math. France 92 (1964), 11. MR 0169667 (29:6913)
  • [17] -, Topics on space-times, Battelle Recontres (DeWitt and Wheeler, eds.), Benjamin, New York, 1968.
  • [18] J. Leray, Hyperbolic differential equations, lecture notes, Princeton, 1953. MR 0063548 (16:139a)
  • [19] W. Pauli, Contributions mathématiques à la théorie des matrices de Dirac, Ann. Inst. H. Poincaré VI (1963), 8.
  • [20] H. Petry, Exotic spinors in superconductivity, J. Math. Phys. 20 (1979), 231. MR 519205 (80c:55011)
  • [21] I. Segal, Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I, Mat.-Fys. Medd. Danske Vid. Selsk. 31 (1959), 121. MR 0112626 (22:3477)
  • [22] J. Slawny, On factor representations and the $ {C^{\ast}}$-algebra of the canonical commutation relations, Comm. Math. Phys. 24 (1972), 151. MR 0293942 (45:3017)
  • [23] A. Wightman, The Dirac equation, Aspects of Quantum Theory (Salam and Wigner, eds.), Cambridge Univ. Press, Cambridge, 1972, pp. 109.
  • [24] -, Relativistic wave equations as singular hyperbolic systems, Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc., Providence, R. I., 1973. MR 0342075 (49:6821)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 81E20, 46L60, 81E05

Retrieve articles in all journals with MSC: 81E20, 46L60, 81E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0637032-8
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society