Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Coextensions of regular semigroups by rectangular bands. I


Authors: John Meakin and K. S. S. Nambooripad
Journal: Trans. Amer. Math. Soc. 269 (1982), 197-224
MSC: Primary 20M10
DOI: https://doi.org/10.1090/S0002-9947-1982-0637035-3
MathSciNet review: 637035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper initiates a general study of the structure of a regular semigroup $ S$ via the maximum congruence $ \rho $ on $ S$ with the property that each $ \rho $-class $ e\rho $, for $ e = {e^2} \in S$, is a rectangular subband of $ S$. Congruences of this type are studied and the maximum such congruence is characterized. A construction of all biordered sets which are coextensions of an arbitrary biordered set by rectangular biordered sets is provided and this is specialized to provide a construction of all solid biordered sets. These results are used to construct all regular idempotent-generated semigroups which are coextensions of a regular idempotent-generated semigroup by rectangular bands: a construction of normal coextensions of biordered sets is also provided.


References [Enhancements On Off] (What's this?)

  • [1] D. Allen, Jr., A generalization of the Rees theorem to a class of regular semigroups, Semigroup Forum 2 (1971), 321-331. MR 0284527 (44:1752)
  • [2] K. Byleen, J. Meakin and F. Pastijn, The fundamental four-spiral semigroups, J. Algebra 54 (1978), 6-26. MR 511454 (80c:20081)
  • [3] -, The double four-spiral semigroup, Simon Stevin 54 (1980), 75-105. MR 572929 (81f:20080)
  • [4] A. H. Clifford, The fundamental representation of a regular semigroup, announcement, Department of Mathematics, Tulane Univ., 1974; Semigroup Forum 10 (1975), 84-92. MR 0393312 (52:14122)
  • [5] -, The partial groupoid of idempotents of a regular semigroup, announcement, Department of Mathematics, Tulane Univ., 1974; Semigroup Forum 10 (1975), 262-268. MR 0442118 (56:506)
  • [6] -, The fundamental representation of a completely regular semigroup, Semigroup Forum 12 (1976), 341-346. MR 0414763 (54:2855)
  • [7] A. H. Clifford and M. Petrich, Some classes of completely regular semigroups, J. Algebra 46 (1977), 462-480. MR 0442119 (56:507)
  • [8] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., vol. 1, 1961; vol. 2, 1967.
  • [9] C. Eberhart and W. Williams, Semimodularity in lattices of congruences, J. Algebra 52 (1978), 75-87. MR 0498910 (58:16917)
  • [10] T. E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208. MR 0249527 (40:2772)
  • [11] -, On orthodox semigroups and uniforms and antiuniform bands, J. Algebra 16 (1970), 204-217. MR 0265492 (42:401)
  • [12] -, Orthodox semigroups, Pacific J. Math. 39 (1971), 677-686. MR 0306370 (46:5496)
  • [13] -, Congruences and Green's relations on regular semigroups, Glasglow Math. J. 13 (1972), 167-175. MR 0318356 (47:6903)
  • [14] J. M. Howie, An introduction to semigroup theory, Academic Press, New York, 1976. MR 0466355 (57:6235)
  • [15] G. Lallement, Demi-groupes réguliers, Ann. Mat. Pura Appl. 77 (1967), 47-129. MR 0225915 (37:1505)
  • [16] D. B. McAlister and T. S. Blyth, Split orthodox semigroups, J. Algebra 51 (1978), 491-525. MR 488779 (81a:20068)
  • [17] J. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. Ser. A 12 (1971), 323-341. MR 0294530 (45:3600)
  • [18] K. S. S. Nambooripad, On some classes of regular semigroups, Semigroup Forum 2 (1971), 264-270. MR 0288196 (44:5394)
  • [19] -, Structure of regular semigroups. I. Fundamental regular semigroups, Semigroup Forum 9 (1975), 354-363. MR 0376920 (51:13095)
  • [20] -, Structure of regular semigroups. I, Mem. Amer. Math. Soc., no. 224, Amer. Math. Soc., Providence, R. I., 1979. MR 546362 (81i:20086)
  • [21] -, The natural partial order on a regular semigroup, Proc. Edinburg Math. Soc. (to appear).
  • [22] -, Pseudo-semilattices and biordered sets, Simon Stevin (to appear).
  • [23] K. S. S. Nambooripad and Y. Sitaraman, On some congruences on regular semigroups, J. Algebra 57 (1979), 10-25. MR 533098 (80h:20098)
  • [24] F. Pastijn, The biorder on the partial groupoid of idempotents of a semigroup, J. Algebra 65 (1980), 147-187. MR 578801 (82c:20107)
  • [25] -, The structure of pseudo-inverse semigroups, Trans. Amer. Math. Soc. (to appear). MR 667165 (84c:20072)
  • [26] M. Petrich, A construction and a classification of bands, Math. Nachr. 48 (1971) 263-274. MR 0294542 (45:3612)
  • [27] -, Structure of completely regular semigroups, Trans. Amer. Math. Soc. 189 (1974), 211-236. MR 0330331 (48:8668)
  • [28] B. M. Schein, On the theory of generalized groups and generalized heaps, Theory of Semigroups and its Applications. I, Izv. Dat. Saratov. Univ., Saratov, 1966, pp. 286-324. (Russian) MR 0209385 (35:283)
  • [29] R. J. Warne, On the structure of semigroups which are unions of groups, Trans. Amer. Math. Soc. 186 (1973), 385-401. MR 0333049 (48:11374)
  • [30] M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392. MR 0227302 (37:2887)
  • [31] M. Yamada and N. Kimura, Note on idempotent semigroups. II, Proc. Japan Acad. Ser. A. Math. Sci. 34 (1958), 110-112. MR 0098141 (20:4603)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20M10

Retrieve articles in all journals with MSC: 20M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0637035-3
Keywords: Regular semigroup, biordered set, regular partial band, idempotent-generated semigroup, coextension, recangular band
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society