Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ideal theory in $ f$-algebras


Authors: C. B. Huijsmans and B. de Pagter
Journal: Trans. Amer. Math. Soc. 269 (1982), 225-245
MSC: Primary 06F25; Secondary 46A40, 46J20, 54C40
DOI: https://doi.org/10.1090/S0002-9947-1982-0637036-5
MathSciNet review: 637036
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper deals mainly with the theory of algebra ideals and order ideals in $ f$-algebras. Necessary and sufficient conditions are established for an algebra ideal to be prime, semiprime or idempotent. In a uniformly complete $ f$-algebra with unit element every algebra ideal is an order ideal iff the $ f$-algebra is normal. This result is based on the fact that the range of every orthomorphism in a uniformly complete normal Riesz space is an order ideal.


References [Enhancements On Off] (What's this?)

  • [1] I. Amemiya, A general spectral theory in semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. Ser. I 12 (1953), 111-156. MR 0056853 (15:137d)
  • [2] E. R. Aron and A. W. Hager, Convex vector lattices and $ l$-algebras, Topology Appl. 12 (1981), 1-10. MR 600458 (82c:54010)
  • [3] S. J. Bernau, On semi-normal lattice rings, Proc. Cambridge Philos. Soc. 61 (1965), 613-616. MR 0183656 (32:1136)
  • [4] A. Bigard, Les orthomorphismes d'un espace réticulé archimedian, (Proc. Nederl. Akad. Wetensch. A75) Indag. Math. 34 (1972), 236-246. MR 0308000 (46:7115)
  • [5] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math., vol. 608, Springer-Verlag, Berlin, Heidelberg and New York, 1977. MR 0552653 (58:27688)
  • [6] G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ciênc. 28 (1956), 41-69. MR 0080099 (18:191d)
  • [7] L. Fuchs, Teilweise geordnete algebraische Strukturen, Studia Math., Band 19, Göttingen, Berlin, 1966. MR 0204547 (34:4386)
  • [8] L. Gillman, Rings with Hausdorff structure space, Fund. Math. 45 (1957), 11-16. MR 0092773 (19:1156a)
  • [9] L. Gillman and M. Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391. MR 0078980 (18:9d)
  • [10] L. Gillman and M. Jerison, Rings of continuous functions, Graduate Texts in Math., vol. 43, Springer-Verlag, Berlin, Heidelberg and New York, 1976. MR 0407579 (53:11352)
  • [11] L. Gillman and C. W. Kohls, Convex and pseudoprime ideals in rings of continuous function, Math. Z. 72 (1960), 399-409. MR 0114115 (22:4942)
  • [12] M. Henriksen, Semiprime ideals of $ f$-rings, Symposia Math., vol. 21, Academic Press, London and New York, pp. 401-409. MR 0480256 (58:435)
  • [13] M. Henriksen, J. R. Isbell and D. G. Johnson, Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1961), 107-117. MR 0133350 (24:A3184)
  • [14] M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961), 73-94. MR 0133698 (24:A3524)
  • [15] C. B. Huijsmans, Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element, (Proc. Nederl. Akad. Wetensch. A77) Indag. Math. 36 (1974), 132-147. MR 0354635 (50:7113)
  • [16] C. B. Huijsmans and B. de Pagter, On $ z$-ideals and $ d$-ideals in Riesz spaces. II, (Proc. Nederl. Akad. Wetensch. A83) Indag. Math. 42 (1980), 391-408. MR 597997 (83c:46004a)
  • [17] D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163-215. MR 0125141 (23:A2447)
  • [18] E. de Jonge and A. C. M. van Rooij, Introduction to Riesz spaces, Math. Centre Tracts, no. 78, Amsterdam, 1977. MR 0473777 (57:13439)
  • [19] W. A. J. Luxemburg, Some aspects of the theory of Riesz spaces, Univ. Arkansas Lecture Notes in Math., vol. 4, 1979. MR 568706 (83f:46010)
  • [20] W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. I, North-Holland, Amsterdam and London, 1971.
  • [21] H. Nakano, Modern spectral theory, Tokyo Math. Book Series, vol. II, Maruzen, Tokyo, 1950. MR 0038564 (12:419f)
  • [22] D. Rudd, On two sum theorems for ideals in $ C(X)$, Michigan Math. J. 19 (1970), 139-141. MR 0259616 (41:4252)
  • [23] G. L. Seever, Measures on $ F$-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280. MR 0226386 (37:1976)
  • [24] H. Subramanian, $ l$-prime ideals in $ f$-rings, Bull. Soc. Math. France 95 (1967), 193-203. MR 0223284 (36:6332)
  • [25] R. D. Williams, Intersections of primary ideals in rings of continuous functions, Canad. J. Math. 24 (1972), 502-519. MR 0295066 (45:4134)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06F25, 46A40, 46J20, 54C40

Retrieve articles in all journals with MSC: 06F25, 46A40, 46J20, 54C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0637036-5
Keywords: Riesz spaces, uniformly complete, normal, order ideal, orthomorphism, $ f$-algebra, algebra ideal, idempotent, semiprime, pseudoprime, prime ideal
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society