Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

An improvement of the Poincaré-Birkhoff fixed point theorem


Author: Patricia H. Carter
Journal: Trans. Amer. Math. Soc. 269 (1982), 285-299
MSC: Primary 54H25; Secondary 55M25, 58F99
MathSciNet review: 637039
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ g$ is a twist homeomorphism of an annulus $ A$ in the plane which leaves at most one point in the interior of $ A$ fixed, then there is an essential simple closed curve in the interior of $ A$ which meets its image in at most one point; hence the annular region bounded by this simple closed curve and the inside component of the boundary of $ A$ is mapped onto either a proper subset or a proper superset of itself.


References [Enhancements On Off] (What's this?)

  • [1] Harold Abelson and Charles Stanton, Poincaré’s geometric theorem for flows, J. Differential Geometry 11 (1976), no. 1, 129–131. MR 0415685 (54 #3765)
  • [2] Richard B. Barrar, Proof of the fixed point theorems of Poincaré and Birkhoff, Canad. J. Math. 19 (1967), 333–343. MR 0210106 (35 #1001)
  • [3] G. D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. 14 (1913), 14-22.
  • [4] -, An extension of Poincaré's last geometric theorem, Acta Math. 47 (1925), 297-311.
  • [5] -, Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1927.
  • [6] M. Brown and W. D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), no. 1, 21–31. MR 0448339 (56 #6646)
  • [7] P. Carter, An improvement of the Poincaré-Birkhoff Fixed Point Theorem, Dissertation, University of Florida, 1978.
  • [8] C. B. García, A fixed point theorem including the last theorem of Poincaré, Math. Programming 9 (1975), no. 2, 227–239. MR 0418069 (54 #6113)
  • [9] Robert Hermann, Some differential-geometric aspects of the Lagrange variational problem, Illinois J. Math. 6 (1962), 634–673. MR 0145457 (26 #2988)
  • [10] H. Jacobowitz, Periodic solution of $ x'' + f(x,\,t) = 0$ via the Poincaré-Birkhoff theorem, J. Differential Equations 20 (1976), 37-52.
  • [11] Howard Jacobowitz, Corrigendum: The existence of the second fixed point: a correction to “Periodic solutions of 𝑥”+𝑓(𝑥,𝑡)=0 via the Poincaré-Birkhoff theorem” (J. Differential Equations 20 (1976), no. 1, 37–52), J. Differential Equations 25 (1977), no. 1, 148–149. MR 0437857 (55 #10778)
  • [12] B. de Kerékjarto, The plane translation theorem of Brouwer and the last geometric theorem of Poincaré, Acta Sci. Math. (Szeged) 4 (1928-1929), 86-102.
  • [13] R. L. Moore, Foundations of point set theory, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722 (27 #709)
  • [14] Walter D. Neumann, Generalizations of the Poincaré Birkhoff fixed point theorem, Bull. Austral. Math. Soc. 17 (1977), no. 3, 375–389. MR 0584597 (58 #28435)
  • [15] M. H. A. Newman, Fixed point and coincidence theorems, J. London Math. Soc. 27 (1952), 135–140. MR 0046637 (13,764f)
  • [16] H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375-407.
  • [17] Carl P. Simon and Charles J. Titus, The fixed point index of symplectic maps, Géométrie symplectique et physique mathématique (Colloq. Internat. C.N.R.S., Aix-en-Provence, 1974) Paris, 1975, pp. 19–28. Éditions Centre Nat. Recherche Sci (English, with French summary). With a question by W. Klingenberg and an answer by Simon. MR 0461565 (57 #1550)
  • [18] T. van der Walt, Fixed and almost fixed points, Mathematical Centre Tracts, vol. 1, Mathematisch Centrum, Amsterdam, 1963. MR 0205246 (34 #5079)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54H25, 55M25, 58F99

Retrieve articles in all journals with MSC: 54H25, 55M25, 58F99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1982-0637039-0
PII: S 0002-9947(1982)0637039-0
Keywords: Fixed point property, homeomorphism, twist homeomorphism of the annulus
Article copyright: © Copyright 1982 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia