Finite sublattices of a free lattice

Author:
J. B. Nation

Journal:
Trans. Amer. Math. Soc. **269** (1982), 311-337

MSC:
Primary 06B25; Secondary 08B20

DOI:
https://doi.org/10.1090/S0002-9947-1982-0637041-9

MathSciNet review:
637041

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Every finite semidistributive lattice satisfying Whitman's condition is isomorphic to a sublattice of a free lattice.

**[1]**R. Antonius and I. Rival,*A note on Whitman's property for free lattices*, Algebra Universalis**4**(1974), 271-272. MR**0357251 (50:9719)****[2]**B. Davey, W. Poguntke and I. Rival,*A characterization of semidistributivity*, Algebra Universalis**5**(1975), 72-75. MR**0382103 (52:2991)****[3]**B. Davey and B. Sands,*An application of Whitman's condition to lattices with no infinite chains*, Algebra Universalis**7**(1977), 171-178. MR**0434896 (55:7860)****[4]**A. Day,*Characterizations of lattices that are bounded-homomorphic images or sublattices of free lattices*, Canad. J. Math.**31**(1979), 69-78. MR**518707 (81h:06004)****[5]**A. Day and J. B. Nation,*A note on finite sublattices of free lattices*, Algebra Universalis. (to appear). MR**663955 (83k:06011)****[6]**R. Freese and J. B. Nation,*Projective lattices*, Pacific J. Math.**75**(1978), 93-106. MR**500031 (80c:06012)****[7]**F. Galvin and B. Jónsson,*Distributive sublattices of a free lattice*, Canad. J. Math.**13**(1961), 265-272. MR**0122738 (23:A78)****[8]**H. Gaskill, G. Grätzer and C. R. Platt,*Sharply transferable lattices*, Canad. J. Math.**27**(1975), 1246-1262. MR**0406879 (53:10665)****[9]**H. Gaskill and C. R. Platt,*Sharp transferability and finite sublattices of free lattices*, Canad. J. Math.**27**(1975), 1036-1041. MR**0389687 (52:10518)****[10]**G. Grätzer and C. R. Platt,*A characterization of sharply transferable lattices*, Canad. J. Math.**32**(1980), 145-154. MR**559791 (82a:06010)****[11]**J. Jězek and V. Slavík,*Primitive lattices*, Czechoslovak Math. J.**29**(1979), 595-634. MR**548223 (81e:06007)****[12]**B. Jónsson,*Sublattices of a free lattice*, Canad. J. Math.**13**(1961), 256-264. MR**0123493 (23:A818)****[13]**-,*Relatively free lattices*, Colloq. Math.**21**(1970), 191-196. MR**0263711 (41:8312)****[14]**B. Jónsson and J. Kiefer,*Finite sublattices of a free lattice*, Canad. J. Math.**14**(1962), 487-497. MR**0137667 (25:1117)****[15]**B. Jónsson and J. B. Nation,*A report on sublattices of a free lattice*, Colloq. Math. Soc. János Bolyai, no. 17, Contributions to Universal Algebra (Szeged), North-Holland, Amsterdam, 1977, pp. 223-257. MR**0472614 (57:12310)****[16]**A. Kostinsky,*Projective lattices and bounded homomorphisms*, Pacific J. Math.**40**(1972), 111-119. MR**0302519 (46:1663)****[17]**H. Lakser,*Finite projective lattices are sharply transferable*, Algebra Universalis**5**(1975), 407-409. MR**0398918 (53:2769)****[18]**R. McKenzie,*Equational bases and non-modular lattice varieties*, Trans. Amer. Math. Soc.**174**(1972), 1-43. MR**0313141 (47:1696)****[19]**J. B. Nation,*Bounded finite lattices*, Colloq. Math. Soc. János Bolyai, Contributions to Universal Algebra (Esztergom), North-Holland, Amsterdam (to appear). MR**660892 (83f:06009)****[20]**C. R. Platt,*Finite transferable lattices are sharply transferable*, Proc. Amer. Math. Soc.**81**(1981), 355-358. MR**597639 (82c:06012)****[21]**I. Rival and B. Sands,*Planar sublattices of a free lattice*, Canad. J. Math.**30**(1978), 1256-1283. MR**511561 (81f:06011a)****[22]**H. Rolf,*The free lattice generated by a set of chains*, Pacific J. Math.**8**(1958), 585-595. MR**0103843 (21:2606)****[23]**P. M. Whitman,*Free lattices*, Ann. of Math. (2)**42**(1941), 325-330. MR**0003614 (2:244f)****[24]**-,*Free lattices*. II, Ann. of Math. (2)**43**(1942), 104-115. MR**0006143 (3:261d)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
06B25,
08B20

Retrieve articles in all journals with MSC: 06B25, 08B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0637041-9

Article copyright:
© Copyright 1982
American Mathematical Society