Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the critical degree of differentiability of a complex planar curve


Author: Joseph Becker
Journal: Trans. Amer. Math. Soc. 269 (1982), 339-350
MSC: Primary 32B10; Secondary 32C40
DOI: https://doi.org/10.1090/S0002-9947-1982-0637042-0
MathSciNet review: 637042
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An example of a pair of complex analytic curves in $ {{\mathbf{C}}^2}$ is given which have the same characteristic pairs but which do not have the same critical degree of differentiability.


References [Enhancements On Off] (What's this?)

  • [1] S. Abhyankar, Inversion and invariance of characteristic pairs, Amer. J. Math. 59 (1967), 363-372. MR 0220732 (36:3784)
  • [2] A. Azevedo, The jacobian ideal of a plane algebroid curve, Ph.D. Thesis, Purdue University, 1967.
  • [3] J. Becker and J. Polking, $ {C^k}$, weakly holomorphic functions on an analytic curve, Rice Univ. Stud. 59 (1972), Vol. 1-9, Proc. Conf. on Complex Analysis. MR 0330521 (48:8858)
  • [4] J. Becker and J. Stutz, The $ {C^1}$ embedding dimension of analytic sets, Duke Math. J. 40 (1973), 221-231. MR 0316743 (47:5291)
  • [5] J. Becker, Holomorphic and differentiable tangent spaces to a complex analytic variety, J. Differential Geom. 12 (1977), 377-401. MR 508718 (81f:32006)
  • [6] T. Bloom, $ {C^1}$ functions on an analytic variety, Duke Math. J. 36 (1969), 283-296. MR 0241688 (39:3027)
  • [7] Sherwood Ebey, The classification of singular points of algebraic curves, Trans. Amer. Math. Soc. 118 (1965), 454-471. MR 0176983 (31:1251)
  • [8] B. Malgrange, Ideals of differentiable functions, Tata Inst. Fund. Res., Bombay; Oxford Univ. Press, London, 1966. MR 0212575 (35:3446)
  • [9] R. Narasimhan, Introduction to analytic spaces, Lecture Notes in Math., vol. 25, Springer-Verlag, Berlin and New York, 1966. MR 0217337 (36:428)
  • [10] F. Pham and B. Teissier, Fractions Lipschitziennes d'une algebra analytique complexe et saturation de Zariski.
  • [11] K. Spallek, Differenzierbare und holomorphic Funktionen auf analytischen Mengen, Math. Ann. 161 (1965), 143-162. MR 0196136 (33:4328)
  • [12] -, Über Singularitateis analytisher Mengen, Math. Ann. 172 (1967), 249-268.
  • [13] J. Stutz, Analytic sets as branched covering, Trans. Amer. Math. Soc. 166 (1972), 241-259. MR 0324068 (48:2420)
  • [14] B. Teissier and O. Zariski, Le probleme des modules pour les branches planes, Cours donne au Centre de Mathematiques de l'Ecole Polytechnique. MR 0414561 (54:2662)
  • [15] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1936), 63-89. MR 1501735
  • [16] -, Tangents to an analytic variety, Ann. of Math. (2) 78 (1963), 455-467.
  • [17] -, Local properties of analytic varieties, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N. J., 1965. MR 0188486 (32:5924)
  • [18] E. Yoshimaga and T. Suzuki, The conductor number and weakly holomorphic functions on an analytic curve in $ {{\mathbf{C}}^2}$, Sci. Rep. Tokyo Kyoiku Diagaku Sect. A 13 (1975).
  • [19] O. Zariski, Studies in equisingularity. I, II, III, Amer. J. Math. 87 (1965), 507-536; ibid. 87 (1965), 972-1006; ibid. 90 (1968), 961-1023.
  • [20] -, Characterization of plane algebroid curves whose module of differentials has maximum torsion, Proc. Nat. Acad. U.S.A. Sci. 56 (1966), 781-786. MR 0202716 (34:2576)
  • [21] -, Open questions on the theory of equisingularity, Bull. Amer. Math. Soc. 77 (1971), 481-491. MR 0277533 (43:3266)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32B10, 32C40

Retrieve articles in all journals with MSC: 32B10, 32C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0637042-0
Keywords: Complex analytic curve, characteristic pairs, differentiable function, holomorphic, weakly holomorphic
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society