Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On an extension of localization theorem and generalized Conner conjecture


Authors: Satya Deo, Tej Bahadur Singh and Ram Anugrah Shukla
Journal: Trans. Amer. Math. Soc. 269 (1982), 395-402
MSC: Primary 57S10
MathSciNet review: 637697
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a compact Lie group. Then Borel-Segal-Quillen-Hsiang localization theorems are known for any $ G$-space $ X$ where $ X$ is any compact Hausdorff space or a paracompact Hausdorff space of finite cohomology dimension. The Conner conjecture proved by Oliver and its various generalizations by Skjelbred are also known for only these two classes of spaces. In this paper we extend all of these results for the equivariant category of all finitistic $ G$-spaces. For the case when $ G = {Z_p}$ or $ G = T$ (torus) some of these results were already proved by Bredon.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah and G. Segal, Equivariant $ K$-theory, Lecture Notes, Univ. Warwick, 1965.
  • [2] Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. MR 0221500
  • [3] Glen E. Bredon, Cohomological aspects of transformation groups, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 245–280. MR 0244990
  • [4] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144
  • [5] Glen E. Bredon, Fixed point sets of actions on Poincaré duality spaces, Topology 12 (1973), 159–175. MR 0331375
  • [6] Armand Borel, Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. MR 0116341
  • [7] P. E. Conner, Retraction properties of the orbit space of a compact topological transformation group, Duke Math. J. 27 (1960), 341–357. MR 0163987
  • [8] Satya Deo and Hari Shankar Tripathi, Compact Lie group actions on finitistic spaces, Topology 21 (1982), no. 4, 393–399. MR 670743, 10.1016/0040-9383(82)90019-2
  • [9] R. Godement, Théorie des faisceaux, Actualités Sci. Indust., Hermann, Paris, 1952.
  • [10] Wu-yi Hsiang, Cohomology theory of topological transformation groups, Springer-Verlag, New York-Heidelberg, 1975. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85. MR 0423384
  • [11] Robert Oliver, A proof of the Conner conjecture, Ann. of Math. (2) 103 (1976), no. 3, 637–644. MR 0415650
  • [12] Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 0298694
  • [13] T. Skjelbred, Acyclic orbit space and cohomology eigenvalues of equivariant maps, Preprint No. 8, Oslo, 1975.
  • [14] Tor Skjelbred, Cohomology eigenvalues of equivariant mappings, Comment. Math. Helv. 53 (1978), no. 4, 634–642. MR 511853, 10.1007/BF02566104

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S10

Retrieve articles in all journals with MSC: 57S10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0637697-0
Article copyright: © Copyright 1982 American Mathematical Society