Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On an extension of localization theorem and generalized Conner conjecture


Authors: Satya Deo, Tej Bahadur Singh and Ram Anugrah Shukla
Journal: Trans. Amer. Math. Soc. 269 (1982), 395-402
MSC: Primary 57S10
DOI: https://doi.org/10.1090/S0002-9947-1982-0637697-0
MathSciNet review: 637697
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a compact Lie group. Then Borel-Segal-Quillen-Hsiang localization theorems are known for any $ G$-space $ X$ where $ X$ is any compact Hausdorff space or a paracompact Hausdorff space of finite cohomology dimension. The Conner conjecture proved by Oliver and its various generalizations by Skjelbred are also known for only these two classes of spaces. In this paper we extend all of these results for the equivariant category of all finitistic $ G$-spaces. For the case when $ G = {Z_p}$ or $ G = T$ (torus) some of these results were already proved by Bredon.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah and G. Segal, Equivariant $ K$-theory, Lecture Notes, Univ. Warwick, 1965.
  • [2] G. E. Bredon, Sheaf theory, McGraw-Hill, New York, 1967. MR 0221500 (36:4552)
  • [3] -, Cohomological aspects of transformation groups, Proc. Conf. Transformation Groups (New Orleans, 1967), Springer-Verlag, Berlin and New York, 1968, pp. 245-280. MR 0244990 (39:6303)
  • [4] -, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [5] -, Fixed point set of actions on Poincaré duality spaces, Topology 12 (1973), 159-175. MR 0331375 (48:9708)
  • [6] A. Borel et al., Seminar on transformation groups, Ann. of Math. Studies, No. 46, Princeton Univ. Press, Princeton, N. J., 1960. MR 0116341 (22:7129)
  • [7] P. E. Conner, Retraction properties of orbit space of a compact transformation group, Duke Math. J. 27(1960), 341-357. MR 0163987 (29:1286)
  • [8] S. Deo and H. S. Tripathi, Toral actions on finitistic spaces, Topology (to appear). MR 670743 (83k:54042)
  • [9] R. Godement, Théorie des faisceaux, Actualités Sci. Indust., Hermann, Paris, 1952.
  • [10] Wu-Yi Hsiang, Cohomology theory of topological transformation groups, Springer-Verlag, Berlin and New York, 1975. MR 0423384 (54:11363)
  • [11] R. Oliver, A proof of the Conner conjecture, Ann. of Math. (2) 103 (1976), 637-644. MR 0415650 (54:3730)
  • [12] D. Quillen, The spectrum of an equivariant cohomology ring. I, Ann. of Math. (2) 94 (1971), 549-572. MR 0298694 (45:7743)
  • [13] T. Skjelbred, Acyclic orbit space and cohomology eigenvalues of equivariant maps, Preprint No. 8, Oslo, 1975.
  • [14] -, Cohomology eigenvalues of equivariant mappings, Comment. Math. Helv. 53 (1978), 634-642. MR 511853 (80m:57035)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S10

Retrieve articles in all journals with MSC: 57S10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0637697-0
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society