Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the fullness of surjective maps of an interval

Authors: Harold Proppe and Abraham Boyarsky
Journal: Trans. Amer. Math. Soc. 269 (1982), 445-452
MSC: Primary 26A18; Secondary 28D99, 58F20
MathSciNet review: 637701
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ I = [0,\,1]$, $ \mathcal{B}$ = Lebesgue measurable subsets of $ [0,\,1]$, and let $ \lambda $ denote the Lebesgue measure on $ (I,\,\mathcal{B})$. Let $ \tau :I \to I$ be measurable and surjective. We say $ \tau $ is full, if for all $ A \in \mathcal{B}$, $ \lambda (A) > 0$, $ \tau (A),\,{\tau ^2}(A), \ldots $, measurable, the condition (1)

$\displaystyle \mathop {\lim }\limits_{n \to \infty } \lambda ({\tau ^n}(A)) = 1$

holds. We say $ \tau $ is interval full if (1) holds for any interval $ A \subset I$. In this note, we give an example of $ \tau :I \to I$ which is continuous and interval full, but not full. We also show that for a class of transformations $ \tau $ satisfying Renyi's condition, interval fullness implies fullness. Finally, we show that fullness is not preserved under limits on the surjections.

References [Enhancements On Off] (What's this?)

  • [1] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. (2) 39 (1964), 1-36. MR 0228654 (37:4234)
  • [2] H. B. Kemperman, The ergodic behaviour of a class of real transformations, Stochastic Processes and Related Topics, (Madan Lal Puri, ed.), Academic Press, New York, 1975, pp. 249-258. MR 0372156 (51:8372)
  • [3] N. Friedman and A. Boyarsky, Irreducibility and primitivity using Markov maps, Linear Algebra and Appl. 37 (1981), 103-117. MR 636213 (83e:58072b)
  • [4] M. Halfant, Analytic properties of Renyi's invariant density, Israel J. Math. 27 (1977), 1-20. MR 0437718 (55:10642)
  • [5] A. Lasota and G. Pianigiani, Invariant measures on topological spaces, Boll. Un. Mat. Ital. B(5), 14 (1977), 592-603. MR 0480951 (58:1098)
  • [6] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. MR 0335758 (49:538)
  • [7] P. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 0033869 (11:504d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A18, 28D99, 58F20

Retrieve articles in all journals with MSC: 26A18, 28D99, 58F20

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society