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PICARD'S THEOREM

BY

DOUGLAS BRIDGES, ALLAN CALDER, WILLIAM JULIAN,

RAY MINES AND FRED RICHMAN

Abstract. This paper deals with the numerical content of Picard's Thsorem. Two

classically equivalent versions of this theorem are proved which are distinct from a

computational point of view. The proofs are elementary, and constructive in the

sense of Bishop. A Brouwerian counterexample is given to the original version of

the theorem.

1. Introduction. A century ago, Picard [8] showed that, in any neighbourhood of

an essential singularity, a complex function attains every complex value, with at

most one exception, an infinite number of times. Picard's proof was nonelemen-

tary, in that it made use of the theory of modular functions. The first elementary

proof was given twenty-five years later by Schottky [9], and was based on a

theorem which now bears his name. Subsequently, Montel [7] used Schottky's

Theorem and the notion of a normal family to give what has become the standard

elementary proof of Picard's Theorem.

In this paper, we shall discuss the numerical content of Picard's Theorem. We

shall prove the following two versions of the theorem:

(A) Let f be a complex-valued analytic function on the annulus {z G C: 0 <

\z — f | < r}, and suppose that f omits the values 0 and 1. Then we can compute the

(finite) order of f at f.

(B) Let f be a complex-valued analytic function on the annulus {z G C: 0 <

\z — f | < r}, with an essential singularity at f, and let g g be distinct complex

numbers. Then, in any neighbourhood o/f, we can compute z such that either f(z) = £

orf(z) = g.

The reader can easily see that these two statements are quite distinct from a

computational point of view. We prove them by elementary methods, based on

Schottky's Theorem and constructive in the sense of Bishop [1]. We also give a

Brouwerian counterexample to the original version of Picard's Theorem.

2. The Schottky theory. Classically, there are at least three approaches to

Schottky's Theorem. The most sophisticated of these uses the theory of modular

functions [5, Chapter V]. A second approach, via Bloch's Theorem, is described in

§§1-3 of Chapter XII of [3]. However, we prefer to follow an argument of
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Titchmarsh [10, 8.85] which appears to be based on the original one of Schottky

and which, in many respects, seems the most natural way to arrive at Schottky's

Theorem.

The main part of our proof of Schottky's Theorem follows very closely the lines

of Titchmarsh's proof. However, what Titchmarsh describes as "Schottky's Theo-

rem" is not the full form of the theorem as understood by other authors, and we

are obliged to supplement his argument in order to reach that full form.

It is convenient at this stage to introduce some notation and definitions. First, we

denote by B(Ç, r) (resp. 73(f, r)) the open (resp. closed) ball in C of centre f and

radius r, and by A(Ç, r, s) the open annulus {z G C: r < \z — f | < s}, where

0 < r < s. We also write A(¡¡, s) instead of A(Ç, 0, s). Next, if0<r<r'<i'<s

and/ is analytic in A(0, r, s), we define

X(f, r', s') = inf

{\f(z)\:\z\ = r'or \z\ = s'}.

P(/. r'> s') = SUP

When r' = s', we write X(f, r') (resp. p(f, r')) instead of X(f r', r') (resp. p(f r', r')).

2.1. Let f be analytic and not identically zero in A(0, r, s), where 0 < r < s. Then

X(f, r') > Ofor all but finitely many r' with r + \(s — r) < r' < r + \(s — r).

Proof. Let K be the compact set {z G C: r + ^(s — r) < \z\ < r + |(j - r)}.

By [2, Theorem 4], either inf{|/(z)|: z G K} > 0 or, as we may suppose, there exist

finitely many points zx, . . . , zninA(0,r, s) and an analytic function g on A(0, r, s)

such that inf{|g(z)|: z G K} > 0 and

f(z) = (z - z,) . . . (z - zn)g(z)       (z G A(0, r, s)).

For any / such that r + (s — r)/4 < r' < r + 3(s — r)/4 and r' =£ \zk\ for each Ac,

we now have X(f, r') > 0.    □

Let U be an open subset of C, / a mapping of U into C and f a complex number.

We say that / omits the value f if f(z) ^ f for all z in U; and that / is a Picard

function (on U) if / is analytic and omits the values 0 and 1.

Before going any further, we introduce the continuous mapping

C: (a, r) -» exp(25V/ (1 - ^(2r - r2))4)

of R+ X [0, 1) into R + . For fixed r in [0, 1), the mapping a -> C(a, r) is strictly

increasing; also, C(a, r) > a for each a > 0.

2.2. Schottky's Theorem. Let a > 0, and fa Picard function on B(0, 1) such that

|/(0)| < a. Then \f(z)\ < C(a, r) whenever \z\ < r < 1.

Proof. Without loss of generality, we can assume that a > 3 and that |1 — /(0)|

<a. Either 1/3 < min(|/(0)|, |1 - /(0)|) or min(|/(0)|, |1 - /(0)|) < 1/2. In the

former case, minor constructive modifications of an argument of Titchmarsh [10,

8.85] (as corrected on pp. 150-154 of [6]) enable us to show that, for 0 < r < 1,

p(f, r) < K(a, r), where K(a, r) = exp(256a8/(l - r)4).
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This leaves us with the case min(|/(0)|, |1 - /(0)|) < 1/2. Replacing/by 1 - /if

necessary, we may assume that |/(0)| < 1/2. Now, we know from the maximum

principle that

X(f, r') = l/p(l//, r') < 1/2 (0 < r' < 1).

Let 0 < r < 1. Either p(f, r) < 3 or, as we may assume, 2 < p(f, r). Applying the

Intermediate Value Theorem to the function t —> |/(re")| on [0, 2tt], we compute f

with |f | = r and 4/3 < |/(f)| < 2. Then t(z) = (z - £)/(& - 1) defines a confor-

mai mapping of 5(0, 1) onto itself with t(0) = f. Moreover, as a straightforward

computation shows, t(7?(0, y(2r _ r2))) --J B(®< r)- Now, F = f ° r is a Picard

function on B(0, 1) such that

max(|F(0)|, |1 - F(0)|) < a   and   min(|F(0)|, |1 - F(0)|) > 1/3.

Thus

p(f r) < sup{|/(z)|: z G t(b(0, y/(2r - r2)))}

= p(F, V(2r - r2)) < K(a, V(2r - r2)).

We note that K(a, t) is an increasing function of t in [0, 1); so that

max(3, K(a, r), K(a, y (2r - r2))) = K(a, V(2r - r2)) = C(a, r).

To complete the proof, it only remains to refer to the maximum principle.   □

2.3. Corollary. Let f be analytic in 5(0, 1), 0 < r < 1 and p(f, r) > C(|/(0)|, r).

Then f attains at least one of the values 0, 1 in 5(0, 1).

Proof. The proof is similar to, but simpler than, that of 2.4 below, and is left to

the reader.   □

We now introduce a mapping which will play a major role in our discussion of

Picard's Theorem. For each a > 0, define <50(a) = 2a,

8n + x(a) = C(8n(a),l/S)       (n = 0, 1, . . . , 25),

and let 8 be the increasing, continuous mapping a —> 826(a) of R+ into R+. Note

that 8(a) > a for each a > 0.

2.4. Corollary. Let f be analytic on A(0, 1), 0 < r < \, 0 < X(f, r) and 8(X(f, r))

< p(f r). Then f attains at least one of the values 0, 1 in the annulus {z G C:

r/2 < \z\ < 3r/2).

Proof. Consider first the case where r = \. As p(f, r) > 8(X(f, r)) > X(f, r), f is

nonconstant. Hence, by 2.1, there exist r„ r2 such that 1/4 <r, < 3/8, 5/8 <r2

< 3/4, 0 < X(f r„ r2) and 0 < X(f - 1, r„ r¿. By [2, Theorem 1], either / attains

at least one of the values 0, 1 in {z G C: r, < \z\ < r2}, or

(*) 0 < inf{min(|/(z)|, |/(z) - 1|): r, < \z\ < r2}.

We now show that (*) cannot happen. To do so, suppose that (*) obtains, choose f

so that \$\={- and \M)\ < 2X(f, x2), and define zn = f exp(«7n'/26) (« =

0, 1, ... , 26). Then the balls  B(zn, 1/8) (« = 0, . . . , 26) cover the semicircle
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(f exp(i<¡>): 0 < <f> < tt}. As each of these balls lies in the annulus (z: r, < \z\ <

r2}, the restriction of/to each B(zn, 1/8) is a Picard function. Moreover,

PVm - *.l < V26 < 1/8 (« = 0, 1, . . . , 25).

A simple induction argument using Schottky's Theorem now shows that |/(z)| <

8n(X(f, {-)) whenever \z - z„\ < 1/8 and « = 0, ... , 26. Hence \f(z)\ < 826(X(f, {-))

= 8(X(f, |)) whenever z = f exp(/</>) and 0 < <#> < tt. Similar considerations involv-

ing the points f exp( - mri/26) (« = 0, . . . , 26) enable us to show that \f(z)\ <

ô(a(/, j)) whenever |z| =\. As this contradicts our hypotheses, we conclude that

(*) cannot hold.

In the case of general r in (0, 1/2], we need only apply the foregoing to the

Picard function z -*/(2rz) to complete the proof.    □

3. Picard's Theorem. Let / be analytic in A(Ç, r), with Laurent expansion

S"-.« an(z — I)", and let v be an integer. We say that f has a pole of order at most

v at I if a_n = 0 for all n > v; if also a_„ ¥= 0, then we say that / has a pole of

determinate order at f, and that the order of this pole is v. (In standard terminology,

a pole of nonpositive order is a removable singularity; while a pole of negative

order v is a zero of order — v.) A necessary and sufficient condition that/ have a

pole of order at most v at f is that (z — l)vf(z) be bounded in some neighbourhood

of f [4, 9.15.2].

3.1. Let f be an analytic function in A(Ç, r) which omits a complex value a and has

a pole at f. Then either f has a removable singularity at f or the order of pole of fat f

is positive and determinate.

Proof. Let 2"_x an(z — f )" be the Laurent expansion of / in A(Ç, r), and v a

positive integer such that a_n = 0 for all « > v. It clearly suffices to prove that

either a_„ = 0 or a_v =£ 0. Now, z —>(z — f)"(/(z) — a) extends to an analytic

function g on 5(0, r). Since g(f + r/2) ^ 0, it follows from [2, Theorem 4] that

either inf{|g(z)|: \z - f | < r/2} > 0—in which case a_v = g(f) ^ 0—or there

exists z' in 5(f, r) with g(z') = 0. In the latter case, were z' =£ ?, f(z') would be

defined and we would have f(z') = (z' — f)~"g(z') + a = a, a contradiction.

Hence z' = f and a_„ = g(f) = 0.    □

3.2. Let f be analytic and nonvanishing on A(i¡, r) with a pole at f. 77ie« the order

of this pole is determinate.

Proof. Let f(z) = 2"_°„ an(z — f)" be the Laurent expansion of / in A($, r),

where v is an integer. In view of 3.1, we can assume that v < 0 and that/has been

extended to an analytic function on 5(f, r). By [2, Theorem 4], either inf{|/(z)|:

\z - ?l < r/2} > 0, in which case / has a pole of order 0 at f ; or there exist a

positive integer m, points zx, . . ., zm of 5(f, r), and an analytic function g on

5(f, r) such that f(z) = (z - zx) . . . (z — zm)g(z) for each z in 5(f, r), and

inf{|g(z)|: \z — f | < r/2) > 0. In the latter case, as/ is nonvanishing in A(Ç, r),

we must have z, = • • • = zm = £ ; whence/has a pole of order - m at f.   □
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Now let/ be a Picard function on A($, r). Then 1// is analytic [2, Theorem 5,

Corollary], and is therefore a Picard function. For 0 < s < 1, let y(s) be the path

t -* $ + se" (0 < t < 2tt) in A(Ç, r). It follows from [1, Chapter 5, Proposition 3]

that

v0(f) = (2ttí)-x f    f'(z)dz/f(z)

is an integer whose value is independent of s. These observations will be used in the

proof of

3.3. Picard's Theorem (first form). Let f be a Picard function on A($, r). Then f

has a pole of determinate order at f.

Proof. We lose no generality in taking J = 0, r = 1. Let 2"_„ akzk be the

Laurent expansion of / in A(f), 1). Let « be a positive integer, and suppose that

a_n ^ 0. For each 5 with 0 < s < 1, we have

\a_„\ = \(2ttí)-x f     z"-xf(z) dz\ < s"8(X(f, s)).

Hence 8(X(f,s)) > s~"\a_„\-> oo as i-»0. As 8 is increasing, it follows that

X(f, s) -» oo as í -^ 0. Thus 1// is bounded in the neighbourhood of 0, and so has a

removable singularity at 0. Using 3.2, we see that 1//, and therefore/, has a pole of

determinate order at 0. Computation of the integral defining v0(f) now shows that

the order of the pole off is - vQ(f); whence n < -v0(f).

It now follows that a_„ = 0 for all « > -v0(f); whence (3.2) / has a pole of

determinate order at 0.   □

Let/be analytic, with Laurent expansion 2!^ a„(z - f)", in the annulus A(Ç, r).

We say that f is an essential singularity of / if there exists a strictly increasing,

infinite sequence (n(k))k>x of positive integers such that a_„(k) ^ 0 for each Ac.

Note that we may be unable to tell whether f is a pole or an essential singularity of

/•
In order to discuss the behaviour of an analytic function in the neighbourhood

of an essential singularity, we need some information about entire functions. We

say that an entire function g is of infinite degree if the function z —* g(l/z) has an

essential singularity at 0. This is equivalent to the condition that, for any poly-

nomial p, the function g — p takes a nonzero value.

3.4. Let g be a nonconstant entire function, p a polynomial function. Then there

exists Í G C such that g(g) =£ 0 and l/g(g) ¥^p(g)-

Proof. Let p(z) = '2,"„=0pnz", where v is a positive integer, and choose r > 0 so

that X(g, r) > 0. Either p.(p, r) < p(\/g, r), in which case we need only choose £ so

that |£| = r and p(p, r) < l/g(g); or 0 < p(p, r). In the latter case, there exists m

with pm t¿ 0. If m = 0, we choose £ so that g(g) ¥= 0 and g(g) i- l/p0. Then either

|2U,P„ri < \l/g(g) - Pol, and l/g(g) ^p(gy, or 0 < |2'„_,pnr|. It follows that
we can take m > 1.
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Now let x be any root of p. If 0 < inf{|g(z)|: \z - x\ < 1}, then g(x) ¥= 0,

(l/g(x) - p(x))g(x) = 1, l/g(x) ¥=p(x) and we can take £ = x. On the other

hand, if

inf{|g(z)|: \z - x[ < 1} < l/sup{|p(z)|: \z - x\ < 1},

we need only choose £ G B(x, 1) so that 0 < g(g) < l/sup{|g(z)|: |z - x\ < 1).

D

3.5. Let g be an entire function of infinite degree, and R, e positive numbers. Then

there exists r > R such that either X(g, r) < e or g has a zero z with R < |z| < r.

Proof. By [2, Theorem 4], we can find an integer v > 0, a polynomial p of

degree v, and an analytic function g, on 5(0, 5 + 2) such that all the roots of p he

in 5(0, R + 2), inf{|g,(z)|: |z| < R + 1} > 0 and g(z) = p(z)gx(z) for each z in

5(0, R + 2). It is easy to see that g, extends to an entire function of infinite degree

such that g = pgx everywhere. By [2, Theorem 5, Corollary], 1/g, is analytic

on 5(0,5 + 1). Let 2~_o¿^Iz', be the Taylor expansion of 1/g, about 0 in

5(0, R + 1). According to 3.4, we can compute £ so that g,(£) =£ 0 and l/g,(£) ¥=

2^_0ä„£"; whence there exists an integer m>v with bm=£0. Using 2.1,

we now choose r > R so that rm\bm\> p(p, r)/e and X(gx, r) > 0. If 0 <

inf{|g,(z)|: |z| < r}, then, for all s in (0, r),

\bm\ = \(2TTi)-x[     dz/z" + xgx(z)\

< p(l/g„ *)/*"■= l/smX(gx,s),

and so, by continuity, \bm\ < l/rmA(g„ r). Thus

X(g, r) < p(p, r)X(gx, r) < p(p, r)/rm\bm\ <e.

On the other hand, if inf{| g,(z)|: |z| < r} < X(gx, r), then g, has a zero z in 5(0, r)

[1, Chapter 5, Theorem 7]. Clearly, R < \z\ < r and z is a zero of g.   □

3.6. The Casorati-Weierstrass Theorem. Let f be analytic in A(Ç, r), with an

essential singularity at f. Let £ G C, 0 < r' < r, and 0 < e. Then there exists z with

0< \z - S\ < r' and \f(z) - £| < e.

Proof. Without loss of generality we can take f = 0, r = 1 and £ = 0. Let

2*_„o a„z" be the Laurent expansion of / about 0, and choose R > l/r' so that

|2"_, a„z"| <e/2 for all z in 5(0, 1/5). As the power series E".0fl-„z" is

convergent for |z| > 1, there is an entire function g such that g(z) = 2"_0 a-„z"

for all complex z. By 3.5, there exists z such that |l/z| > R and |g(l/^)| < e/2.

Thus |z| < 1/5 < r' and |/(z)| < |2»_, anz"\ + \g(l/z)\ < e.   □

Our next theorem constitutes a considerable strengthening of the Casorati-

Weierstrass Theorem.

3.7. Picard's Theorem (second version). Let f be analytic on A($, r), with an

essential singularity at f, and let £, £' be distinct complex numbers. Then, in any

neighbourhood of f, / attains at least one of the values g g.
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Proof. It is easy to see that we may take f = 0, r = 1, and that it will then

suffice to show that/ attains one of the values 0, 1 in A(0, 1). Let 2~__oo anz" be

the Laurent expansion of /in A(0, 1), and choose v > 1 with a_„ ^ 0. Compute r'

so that 0 < r' < 1/2 and 0 < a = min(A(/, r'), X(f — 1, r')). By 3.6, there exists p

such that 0 < p < min(r', (8(a)~x\a_v\)x/'') and X(f p) < a. For such p we have

l«-„l = 1(2™-)"' f    *'~!/W <fe| < P'C(/, P)
JTt(P)

and therefore p(/, p) > p~"\a_y\ > 8(a) > 8(X(f, p)). It follows from 2.4 that /

attains at least one of the values 0, 1 in the annulus {z: p/2 < |z| < 3p/2).   □

3.8. Corollary. Let f be an analytic function on A(Ç, r) which has an essential

singularity at f and omits the value 0. Then f attains every nonzero complex value.

D

The following is a Brouwerian counterexample to the classical Picard Theorem

that, under the conditions of 3.7, one of the values 0, 1 is attained infinitely often

by/in A(0, 1). Let (an)n>x be an increasing sequence in {0, 1}, and define entire

functions gn by

(l +  2   zk/k\\ez/n    ifan =0,

8"{Z) = ' íl+  ¿   zk/k\\e'f   ifa„ = 1,

where v is the smallest positive integer Ac with ak = 1.

Then g: z ^> lim^oo Sn(z) is an entire function of infinite degree; so that /:

z -> g(l/z) is analytic everywhere except at 0, where it has an essential singularity.

If f(z) = 0 for infinitely many distinct z, then we can prove the statement, "for

each positive integer «, an = 0"; while if f(z) = 1 for infinitely many distinct z,

then we can prove the negation of that statement.

Turning now to the Little Picard Theorem [3, Chapter XII, 2.3], we first observe

that our constructive version of that theorem is not an immediate consequence of

3.7: this is because there is no constructive procedure for showing that a given

entire function is either a polynomial or of infinite degree (cf. [3, Chapter XII,

introductory remarks]). However, the proofs of the following results are similar to,

but simpler than, those of their counterparts above, and are left to the reader.

3.9. Little Picard Theorem. Let f be a nonconstant entire function, and g g

distinct complex numbers. Then f attains at least one of the values g g.    □

3.10. Corollary. Let f be a nonconstant entire function which omits the value 0.

Then f attains every nonzero complex value,   fj
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