Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An alternating sum formula for multiplicities in $ L\sp{2}(\Gamma \backslash G)$


Author: Roberto J. Miatello
Journal: Trans. Amer. Math. Soc. 269 (1982), 567-574
MSC: Primary 22E30; Secondary 22E46
DOI: https://doi.org/10.1090/S0002-9947-1982-0637710-0
MathSciNet review: 637710
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an alternating sum formula for multiplicities in $ {L^2}(\Gamma \backslash G)$, where $ G$ is a semisimple Lie group of split rank one with finite center and $ \Gamma $ is a discrete cocompact torsion free subgroup.


References [Enhancements On Off] (What's this?)

  • [1] D. De George and N. Wallach, Limit formulas for multiplicities in $ {L^2}(\Gamma \backslash G)$. II. The tempered spectrum, Ann. of Math. (2) 109 (1979), 477-495. MR 534759 (81g:22010)
  • [2] Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98-163. MR 0080875 (18:318c)
  • [3] -, Harmonic analysis on real reductive groups. The Maass-Selberg relations and the Plancherel formula, Ann. of Math. (2) 104 (1976), 117-201. MR 0439994 (55:12875)
  • [4] R. Hotta and R. Parthasarathy, Multiplicity formula for discrete series, Invent. Math. 26 (1974), 133-178. MR 0348041 (50:539)
  • [5] A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489-578. MR 0460543 (57:536)
  • [6] S. Lang, $ Sl(2,\,{\mathbf{R}})$, Addison-Wesley, Reading, Mass., 1975. MR 0430163 (55:3170)
  • [7] R. Miatello, The Minakshisundaram-Pleijel coefficients for the vector valued heat kernel on compact, locally symmetric spaces of negative curvature, Trans. Amer. Math. Soc. 260 (1980), 1-33. MR 570777 (81f:58033)
  • [8] W. Schmid, On a conjecture of Langlands, Ann. of Math. (2) 93 (1971), 1-42. MR 0286942 (44:4149)
  • [9] N. R. Wallach, On the Selberg trace formula in the case of compact quotient, Bull. Amer. Math. Soc. 82(1976), 171-195. MR 0404533 (53:8333)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E30, 22E46

Retrieve articles in all journals with MSC: 22E30, 22E46


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0637710-0
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society