Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Products of two Borel measures


Author: Roy A. Johnson
Journal: Trans. Amer. Math. Soc. 269 (1982), 611-625
MSC: Primary 28C15; Secondary 03E35, 28A35
DOI: https://doi.org/10.1090/S0002-9947-1982-0637713-6
MathSciNet review: 637713
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mu $ and $ \nu $ be finite Borel measures on Hausdorff spaces $ X$ and $ Y$, respectively, and suppose product measures $ \mu \times {}_1\nu $ and $ \mu \times {}_2\nu $ are defined on the Borel sets of $ X \times Y$ by integrating vertical and horizontal cross-section measure, respectively. Sufficient conditions are given so that $ \mu \times {}_1\nu = \mu \times {}_2\nu $ and so that the usual product measure $ \mu \times \nu $ can be extended to a Borel measure on $ X \times Y$ by means of completion. Examples are given to illustrate these ideas.


References [Enhancements On Off] (What's this?)

  • [1] S. K. Berberian, Measure and integration, Macmillan, New York, 1965. MR 0183839 (32:1315)
  • [2] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. MR 0180954 (31:5184)
  • [3] D. H. Fremlin, Products of Radon measures: a counter-example, Canad. Math. Bull. 19 (1976), 285-289. MR 0435332 (55:8292)
  • [4] R. J. Gardner, The regularity of Borel measures and Borel measure-compactness, Proc. London Math. Soc. (3) 30 (1975), 95-113. MR 0367145 (51:3387)
  • [5] S. L. Gulden, W. M. Fleischman and J. H. Weston, Linearly ordered topological spaces, Proc. Amer. Math. Soc. 24 (1970), 197-203. MR 0250272 (40:3511)
  • [6] P. R. Halmos, Measure theory, Van Nostrand, New York, 1950. MR 0033869 (11:504d)
  • [7] R. A. Johnson, On product measures and Fubini's theorem in locally compact spaces, Trans. Amer. Math. Soc. 123 (1966), 112-129. MR 0197669 (33:5832)
  • [8] -, Measurability of cross section measure of a product Borel set, J. Austral. Math. Soc. Ser. A 28 (1979), 346-352. MR 557285 (82k:28005)
  • [9] -, Nearly Borel sets and product measures, Pacific J. Math. 87 (1980), 97-109. MR 590870 (82b:28024)
  • [10] I. Juhász, Cardinal functions in topology, Math. Centre Tracts, no. 34, Mathematisch Centrum, Amsterdam, 1971. MR 0340021 (49:4778)
  • [11] I. Juhász, K. Kunen and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canad. J. Math. 28 (1976), 998-1005. MR 0428245 (55:1270)
  • [12] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760-766. MR 0253292 (40:6507)
  • [13] J. L. Kelley, General topology, Van Nostrand, New York, 1955. MR 0070144 (16:1136c)
  • [14] K. Kunen, A compact $ L$-space under CH, Technical Report #21, University of Texas at Austin, 1980.
  • [15] E. Marczewski and R. Sikorski, Measures on nonseparable metric spaces, Colloq. Math. 1 (1948), 133-139. MR 0025548 (10:23f)
  • [16] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178. MR 0270904 (42:5787)
  • [17] A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. 14 (1976), 505-516. MR 0438292 (55:11210)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28C15, 03E35, 28A35

Retrieve articles in all journals with MSC: 28C15, 03E35, 28A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0637713-6
Keywords: Borel measure, purely atomic measure, separable-regular Borel measure, completion of a measure
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society