Degeneracy theorems for holomorphic mappings between algebraic varieties

Author:
Robert Molzon

Journal:
Trans. Amer. Math. Soc. **270** (1982), 183-192

MSC:
Primary 32H30

MathSciNet review:
642337

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Degeneracy theorems are proved for holomorphic mappings from affine algebraic manifolds to projective algebraic manifolds of equal dimensions. A mapping is degenerate if it satisfies a growth estimate and omits a set of -plane sections of positive capacity; the capacity being defined in terms of a singular integral. The capacity is a more delicate method of measuring the size of a set of -plane sections than Hausdorff measure and arises naturally by considering the singular integrals in the First Main Theorem of Nevanlinna.

**[1]**Raoul Bott and S. S. Chern,*Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections*, Acta Math.**114**(1965), 71–112. MR**0185607****[2]**Lennart Carleson,*Selected problems on exceptional sets*, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0225986****[3]**James A. Carlson and Phillip A. Griffiths,*The order functions for entire holomorphic mappings*, Value distribution theory, Part A (Proc. Tulane Univ. Program, 1972–1973), Dekker, New York, 1974, pp. 225–248. MR**0404699****[4]**James A. Carlson,*A moving lemma for the transcendental Bezout problem*, Ann. of Math. (2)**103**(1976), no. 2, 305–330. MR**0409901****[5]**Mark Lee Green,*Some Picard theorems for holomorphic maps to algebraic varieties*, Amer. J. Math.**97**(1975), 43–75. MR**0367302****[6]**Phillip Griffiths and James King,*Nevanlinna theory and holomorphic mappings between algebraic varieties*, Acta Math.**130**(1973), 145–220. MR**0427690****[7]**John J. Hirschfelder,*The first main theorem of value distribution in several variables*, Invent. Math.**8**(1969), 1–33. MR**0245840****[8]**Robert E. Molzon,*Sets omitted by equidimensional holomorphic mappings*, Amer. J. Math.**101**(1979), no. 6, 1271–1283. MR**548881**, 10.2307/2374140**[9]**Wilhelm Stoll,*Invariant forms on Grassmann manifolds*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. Annals of Mathematics Studies, No. 89. MR**0481089****[10]**H. Wu,*Remarks on the first main theorem in equidistribution theory. III*, J. Differential Geometry**3**(1969), 83–94. MR**0276502****[11]**H. Wu,*Mappings of Riemann surfaces (Nevanlinna theory)*, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 480–532. MR**0237772**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32H30

Retrieve articles in all journals with MSC: 32H30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0642337-0

Article copyright:
© Copyright 1982
American Mathematical Society