On nonseparable Banach spaces

Author:
Spiros A. Argyros

Journal:
Trans. Amer. Math. Soc. **270** (1982), 193-216

MSC:
Primary 46B20; Secondary 03E35, 03E50

MathSciNet review:
642338

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Combining combinatorial methods from set theory with the functional structure of certain Banach spaces we get some results on the isomorphic structure of nonseparable Banach spaces. The conclusions of the paper, in conjunction with already known results, give complete answers to problems of the theory of Banach spaces. An interesting point here is that some questions of Banach spaces theory are independent of Z.F.C. So, for example, the answer to a conjecture of Pełczynski that states that the isomorphic embeddability of into implies, for any infinite cardinal , the isomorphic embedding of into , gets the following form:

if , has been proved from Pełczynski;

if , the proof is given in this paper;

if , in , an example discovered by Haydon gives a negative answer;

if , in , is also proved in this paper.

**[1]**S. Argyros,*On the dimension of injective Banach spaces*, Proc. Amer. Math. Soc.**78**(1980), no. 2, 267–268. MR**550510**, 10.1090/S0002-9939-1980-0550510-9**[2]**S. Argyros,*Weak compactness in 𝐿¹(𝜆) and injective Banach spaces*, Israel J. Math.**37**(1980), no. 1-2, 21–33. MR**599299**, 10.1007/BF02762865**[3]**S. Argyros and S. Negrepontis,*Universal embeddings of**into**and*, Colloq. Math. Soc. Janós Bolyai Topology, vol. 23, Budapest, 1978.**[4]**W. W. Comfort and S. Negrepontis,*The theory of ultrafilters*, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 211. MR**0396267****[5]**Leonard E. Dor,*On projections in 𝐿₁*, Ann. of Math. (2)**102**(1975), no. 3, 463–474. MR**0420244****[6]**James Hagler,*On the structure of 𝑆 and 𝐶(𝑆) for 𝑆 dyadic*, Trans. Amer. Math. Soc.**214**(1975), 415–428. MR**0388062**, 10.1090/S0002-9947-1975-0388062-1**[7]**James Hagler and Charles Stegall,*Banach spaces whose duals contain complemented subspaces isomorphic to 𝐶[0,1]*, J. Functional Analysis**13**(1973), 233–251. MR**0350381****[8]**A. Hajnal,*Proof of a conjecture of S. Ruziewicz*, Fund. Math.**50**(1961/1962), 123–128. MR**0131986****[9]**Richard Haydon,*On Banach spaces which contain 𝑙¹(𝜏) and types of measures on compact spaces*, Israel J. Math.**28**(1977), no. 4, 313–324. MR**0511799****[10]**-,*On dual**spaces and injective bidual Banach spaces*, Israel J. Math.**7**(1978), 142-152.**[11]**W. B. Johnson, H. P. Rosenthal, and M. Zippin,*On bases, finite dimensional decompositions and weaker structures in Banach spaces*, Israel J. Math.**9**(1971), 488–506. MR**0280983****[12]**A. Pełczyński,*Projections in certain Banach spaces*, Studia Math.**19**(1960), 209–228. MR**0126145****[13]**-,*On Banach spaces containing*, Studia Math.**30**(1968), 231-246.**[14]**Haskell P. Rosenthal,*On injective Banach spaces and the spaces 𝐿^{∞}(𝜇) for finite measure 𝜇*, Acta Math.**124**(1970), 205–248. MR**0257721****[15]**Haskell P. Rosenthal,*On relatively disjoint families of measures, with some applications to Banach space theory*, Studia Math.**37**(1970), 13–36. MR**0270122****[16]***Handbook of mathematical logic*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra; Studies in Logic and the Foundations of Mathematics, Vol. 90. MR**0457132****[17]**T. W. Starbird,*Subspaces of**containing*, Dissertation, Univ. of California, Berkeley, 1976.**[18]**C. Stegall,*Banach spaces whose duals contain 𝑙₁(Γ) with applications to the study of dual 𝐿₁(𝜇) spaces*, Trans. Amer. Math. Soc.**176**(1973), 463–477. MR**0315404**, 10.1090/S0002-9947-1973-0315404-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46B20,
03E35,
03E50

Retrieve articles in all journals with MSC: 46B20, 03E35, 03E50

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1982-0642338-2

Article copyright:
© Copyright 1982
American Mathematical Society