On nonseparable Banach spaces
Author:
Spiros A. Argyros
Journal:
Trans. Amer. Math. Soc. 270 (1982), 193216
MSC:
Primary 46B20; Secondary 03E35, 03E50
MathSciNet review:
642338
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Combining combinatorial methods from set theory with the functional structure of certain Banach spaces we get some results on the isomorphic structure of nonseparable Banach spaces. The conclusions of the paper, in conjunction with already known results, give complete answers to problems of the theory of Banach spaces. An interesting point here is that some questions of Banach spaces theory are independent of Z.F.C. So, for example, the answer to a conjecture of Pełczynski that states that the isomorphic embeddability of into implies, for any infinite cardinal , the isomorphic embedding of into , gets the following form: if , has been proved from Pełczynski; if , the proof is given in this paper; if , in , an example discovered by Haydon gives a negative answer; if , in , is also proved in this paper.
 [1]
S.
Argyros, On the dimension of injective Banach
spaces, Proc. Amer. Math. Soc.
78 (1980), no. 2,
267–268. MR
550510 (81c:46013), http://dx.doi.org/10.1090/S00029939198005505109
 [2]
S.
Argyros, Weak compactness in 𝐿¹(𝜆) and
injective Banach spaces, Israel J. Math. 37 (1980),
no. 12, 21–33. MR 599299
(82a:46016), http://dx.doi.org/10.1007/BF02762865
 [3]
S. Argyros and S. Negrepontis, Universal embeddings of into and , Colloq. Math. Soc. Janós Bolyai Topology, vol. 23, Budapest, 1978.
 [4]
W.
W. Comfort and S.
Negrepontis, The theory of ultrafilters, SpringerVerlag, New
YorkHeidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften,
Band 211. MR
0396267 (53 #135)
 [5]
Leonard
E. Dor, On projections in 𝐿₁, Ann. of Math. (2)
102 (1975), no. 3, 463–474. MR 0420244
(54 #8258)
 [6]
James
Hagler, On the structure of 𝑆 and
𝐶(𝑆) for 𝑆 dyadic, Trans. Amer. Math. Soc. 214 (1975), 415–428. MR 0388062
(52 #8899), http://dx.doi.org/10.1090/S00029947197503880621
 [7]
James
Hagler and Charles
Stegall, Banach spaces whose duals contain complemented subspaces
isomorphic to 𝐶[0,1], J. Functional Analysis
13 (1973), 233–251. MR 0350381
(50 #2874)
 [8]
A.
Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math.
50 (1961/1962), 123–128. MR 0131986
(24 #A1833)
 [9]
Richard
Haydon, On Banach spaces which contain 𝑙¹(𝜏)
and types of measures on compact spaces, Israel J. Math.
28 (1977), no. 4, 313–324. MR 0511799
(58 #23514)
 [10]
, On dual spaces and injective bidual Banach spaces, Israel J. Math. 7 (1978), 142152.
 [11]
W.
B. Johnson, H.
P. Rosenthal, and M.
Zippin, On bases, finite dimensional decompositions and weaker
structures in Banach spaces, Israel J. Math. 9
(1971), 488–506. MR 0280983
(43 #6702)
 [12]
A.
Pełczyński, Projections in certain Banach
spaces, Studia Math. 19 (1960), 209–228. MR 0126145
(23 #A3441)
 [13]
, On Banach spaces containing , Studia Math. 30 (1968), 231246.
 [14]
Haskell
P. Rosenthal, On injective Banach spaces and the spaces
𝐿^{∞}(𝜇) for finite measure 𝜇, Acta
Math. 124 (1970), 205–248. MR 0257721
(41 #2370)
 [15]
Haskell
P. Rosenthal, On relatively disjoint families of measures, with
some applications to Banach space theory, Studia Math.
37 (1970), 13–36. MR 0270122
(42 #5015)
 [16]
Handbook of mathematical logic, NorthHolland Publishing Co.,
AmsterdamNew YorkOxford, 1977. Edited by Jon Barwise; With the
cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S.
Troelstra; Studies in Logic and the Foundations of Mathematics, Vol. 90. MR 0457132
(56 #15351)
 [17]
T. W. Starbird, Subspaces of containing , Dissertation, Univ. of California, Berkeley, 1976.
 [18]
C.
Stegall, Banach spaces whose duals contain
𝑙₁(Γ) with applications to the study of dual
𝐿₁(𝜇) spaces, Trans.
Amer. Math. Soc. 176 (1973), 463–477. MR 0315404
(47 #3953), http://dx.doi.org/10.1090/S00029947197303154043
 [1]
 S. Argyros, On dimension of injective Banach spaces, Proc. Amer. Math. Soc. 78 (1980), 267268. MR 550510 (81c:46013)
 [2]
 , Weak compactness in and injective Banach spaces, Israel J. Math. 37 (1980), 2133. MR 599299 (82a:46016)
 [3]
 S. Argyros and S. Negrepontis, Universal embeddings of into and , Colloq. Math. Soc. Janós Bolyai Topology, vol. 23, Budapest, 1978.
 [4]
 W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Band 211, SpringerVerlag, Berlin, 1974. MR 0396267 (53:135)
 [5]
 L. Dor, On projection , Ann. of Math. (2) 102 (1978), 463474. MR 0420244 (54:8258)
 [6]
 J. Hagler, On the structure and for dyadic, Trans. Amer. Math. Soc. 214 (1975), 415427. MR 0388062 (52:8899)
 [7]
 J. Hagler and C. Stegall, Banach spaces whose duals contain complemented subspaces isomorphic to , J. Funct. Anal. 13 (1973), 233251. MR 0350381 (50:2874)
 [8]
 A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math. 50 (1961), 123128. MR 0131986 (24:A1833)
 [9]
 R. Haydon, On Banach spaces which contain and types of measures on compact spaces, Israel J. Math. 28 (1977), 313324, MR 0511799 (58:23514)
 [10]
 , On dual spaces and injective bidual Banach spaces, Israel J. Math. 7 (1978), 142152.
 [11]
 W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488506. MR 0280983 (43:6702)
 [12]
 A. Pełczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209228. MR 0126145 (23:A3441)
 [13]
 , On Banach spaces containing , Studia Math. 30 (1968), 231246.
 [14]
 H. P. Rosenthal, On injective Banach spaces and the spaces for finite measures , Acta Math. 127 (1970), 205248. MR 0257721 (41:2370)
 [15]
 , On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 1336. MR 0270122 (42:5015)
 [16]
 M. E. Rudin, Martin's axiom, Handbook of Mathematical Logic, (J. Barwise, ed.), NorthHolland, Amsterdam, 1977, pp. 481502. MR 0457132 (56:15351)
 [17]
 T. W. Starbird, Subspaces of containing , Dissertation, Univ. of California, Berkeley, 1976.
 [18]
 C. Stegall, Banach spaces whose duals contain with applications to the study of dual spaces, Trans. Amer. Math. Soc. 17 (1973), 463477. MR 0315404 (47:3953)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46B20,
03E35,
03E50
Retrieve articles in all journals
with MSC:
46B20,
03E35,
03E50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198206423382
PII:
S 00029947(1982)06423382
Article copyright:
© Copyright 1982
American Mathematical Society
