Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Szegő limit theorems for Toeplitz operators on compact homogeneous spaces


Authors: I. I. Hirschman, D. S. Liang and E. N. Wilson
Journal: Trans. Amer. Math. Soc. 270 (1982), 351-376
MSC: Primary 47B35; Secondary 22C05, 43A85
DOI: https://doi.org/10.1090/S0002-9947-1982-0645321-6
MathSciNet review: 645321
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a real valued integrable function on a compact homogeneous space $ M = K\backslash G$ and $ {M_f}$ the operator of pointwise multiplication by $ f$. The authors consider families of Toeplitz operators $ {T_{f,P}} = P{M_f}P$ as $ P$ ranges over a net of orthogonal projections from $ {L^2}(M)$ to finite dimensional $ G$-invariant subspaces. Necessary and sufficient conditions are given on the net in order that the distribution of eigenvalues of these Toeplitz operators is asymptotic to the distribution of values of $ f$ in the sense of Szegö's classical theorem for the circle. Explicit sequences satisfying these conditions are constructed for all compact Lie groups and for all Riemannian symmetric compact spaces.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on Lie groups, Benjamin, New York, 1969. MR 0252560 (40:5780)
  • [2] S. Gelbart, A theory of Stiefel harmonics, Trans. Amer. Math. Soc. 192 (1974), 29-50. MR 0425519 (54:13474)
  • [3] A. Grenander and G. Szegö, Toeplitz forms and their applications, Univ. of California Press, Berkley, Calif., 1958. MR 0094840 (20:1349)
  • [4] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [5] E. Hewitt and K. Ross, Abstract harmonic analysis. II, Springer-Verlag, Berlin and New York, 1970. MR 0262773 (41:7378)
  • [6] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, Berlin and New York, 1972. MR 0323842 (48:2197)
  • [7] H. R. Krieger, Toeplitz operators on locally compact spaces, J. Math. Mech. 14 (1965), 439-478. MR 0177261 (31:1524)
  • [8] David S. Liang, Eigenvalue distributions of Toeplitz operators, Thesis, Washington University, 1974.
  • [9] F. Riesz and B. Sz. Nagy, Functional analysis, Ungar, New York, 1955. MR 0071727 (17:175i)
  • [10] G. Szegö, "Ein Grenzwortsatz über die Toeplitzschen Determinanten einer reel positiven Funktion", Math. Ann. 76 (1915), 490-503. MR 1511838
  • [11] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, Berlin and New York, 1972. MR 0498999 (58:16979)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B35, 22C05, 43A85

Retrieve articles in all journals with MSC: 47B35, 22C05, 43A85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0645321-6
Keywords: Toeplitz operators, Szegö theorem, compact groups, homogeneous spaces, Lie groups, compact symmetric spaces
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society