Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Mathematical theory of single channel systems. Analyticity of scattering matrix


Author: I. M. Sigal
Journal: Trans. Amer. Math. Soc. 270 (1982), 409-437
MSC: Primary 35P25; Secondary 47A40, 81F10
DOI: https://doi.org/10.1090/S0002-9947-1982-0645323-X
MathSciNet review: 645323
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the $ S$-matrix of a quantum many-body, short-range, single-channel system has a meromorphic continuation whose poles occur at most at the dilation-analytic resonances [28], [24] and at the eigenvalues of the Hamiltonian. In passing, we prove the main spectral theorem (on location of the essential spectrum) and asymptotic completeness for the mentioned class of systems.


References [Enhancements On Off] (What's this?)

  • [1] E. Balslev, Aarhus (preprint).
  • [2] F. A. Berezin, Asymptotic behavior of eigenfunctions in Schrödinger's equation for many particles, Dokl. Akad. Nauk SSSR 163 (1965), 795-798. MR 0190515 (32:7927)
  • [3] P. Deift, W. Hunziker, B. Simon and E. Vock, Pointwise bounds on eigenfunctions and wave packets in $ N$-body quantum systems. IV, Comm. Math. Phys. 64 (1978), 1-34. MR 516993 (80k:81016)
  • [4] V. Enss, A note on Hunziker's theorem, Comm. Math. Phys. 52 (1977), 233-238. MR 0446195 (56:4524)
  • [5] M. Combesqure and J. Ginibre, Hilbert space approach to the quantum mechanical three-body problem, Ann. Inst. H. Poincaré Sect. A 21 (1974), 97-145. MR 0368656 (51:4897)
  • [6] G. Hagedorn, A link between scattering resonances and dilation analytic resonances in few body quantum mechanics, Comm. Math. Phys. 65 (1979), 181-188. MR 528190 (80f:81093)
  • [7] -, Asymptotic completeness for classes of two, three and four particle Schrödinger operators, Trans. Amer. Math. Soc. 258 (1980), 1-75. MR 554318 (81a:81079)
  • [8] W. Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta 39 (1966), 451-462. MR 0211711 (35:2588)
  • [9] R. J. Iorio and M. O'Carroll, Asymptotic completeness for multiparticle Schrödinger operators with weak potentials, Comm. Math. Phys. 27 (1972), 137-145. MR 0314392 (47:2944)
  • [10] T. Kako and K. Yajima, Spectral and scattering theory for a class of non-self-adjoint operators, J. Math. Soc. Japan (to appear).
  • [11] T. Kato, Wave operators and similarity for some nonself-adjoint operators, Math. Ann. 162 (1966), 258-279. MR 0190801 (32:8211)
  • [12] -, Smooth operators and commutators, Stud. Math. 31 (1968), 535-546. MR 0234314 (38:2631)
  • [13] -, Two-space scattering theory, with applications to many-body problems, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 503-514. MR 0512674 (58:23670)
  • [14] T. Kato and S. T. Kuroda, The abstract theory of scattering, Rocky Mountain J. Math. 1 (1971), 127-171. MR 0385604 (52:6464b)
  • [15] M. Reed and B. Simon, Methods of modern mathematical physics. IV, Academic Press, New York, 1978. MR 751959 (85e:46002)
  • [16] I. M. Sigal, On the discrete spectrum of the Schrödinger operators of multiparticle systems, Comm. Math. Phys. 48 (1976), 137-154. MR 0425388 (54:13344)
  • [17] -, Mathematical foundations of quantum scattering theory for multiparticle systems, Mem. Amer. Math. Soc. No. 209 (1978). MR 508478 (81a:81078)
  • [18] -, On quantum mechanics of many-body systems with dilation-analytic potentials, Bull. Amer. Math. Soc. 84 (1978), 152-154. MR 0459410 (56:17603)
  • [19] -, Scattering theory for multiparticle systems. I, II, Preprint ETH-Zurich (1977-1978) (an expanded version will appear in Springer Lecture Notes in Math.).
  • [20] -, On abstract scattering theory for two spaces, Princeton University (preprint).
  • [21] -, Spectral theory of many-body Schrödinger operators, (unpublished).
  • [22] E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
  • [23] K. Yajima, An abstract stationary approach to three-body scattering, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 109-132. MR 494598 (81g:47009)
  • [24] B. Simon, The theory of resonances for dilation-analytic potentials and the foundations of time dependent perturbation theory, Ann. of Math. (2) 97 (1973), 274-274. MR 0353896 (50:6378)
  • [25] K. Hepp, On the quantum mechanical $ N$-body problem, Helv. Phys. Acta. 42 (1969), 425-458. MR 0247840 (40:1101)
  • [26] D. Babbitt and E. Balslev, Dilation-analyticity and decay properties of interactions, Comm. Math. Phys. 35 (1974), 173-179. MR 0334752 (48:13070)
  • [27] -, A characterization of the dilation-analytic potentials and vectors, J. Funct. Anal. 18 (1974), 1-14. MR 0384008 (52:4885)
  • [28] E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys. 22 (1971), 280-294. MR 0345552 (49:10288)
  • [29] T. Kato and S. T. Kuroda, Theory of simple scattering and eigenfunction expansions, Functional Analysis and Related Fields (edited by F. Browder), Springer-Verlag, Berlin and New York, 1970. MR 0385603 (52:6464a)
  • [30] R. Lavine, Commutators and scattering theory, Comm. Math. Phys. 20 (1971), 301-323. MR 0293945 (45:3020)
  • [31] -, Absolute continuity of positive spectrum for Schrödinger operators with long-range potentials, J. Funct. Anal. 12 (1973), 30-54. MR 0342880 (49:7624)
  • [32] E. Mourre, Applications de la méthode de Lavine ou problème a trois corps.
  • [33] E. Balslev, Analytic scattering theory for many-body systems below the smallest three-body threshold, Aarhus (preprint). MR 589431 (82d:81121)
  • [34] J. Weidman, The virial theorem and its application to the spectral theory of Schrödinger operators, Bull. Amer. Math. Soc. 73 (1967), 452-456. MR 0208197 (34:8007)
  • [35] I. M. Sigal, A remark on the absence of bound states in the many-body systems (in preparation).
  • [36] B. Simon, Absence of positive eigenvalues in a class of multiparticle quantum systems, Math. Ann. 207 (1974), 133-138. MR 0329485 (48:7827)
  • [37] E. Balslev, Absence of positive eigenvalues of Schrödinger operators, Arch. Rational Mech. Anal. 59 (1975), 343-357. MR 0489507 (58:8928)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35P25, 47A40, 81F10

Retrieve articles in all journals with MSC: 35P25, 47A40, 81F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0645323-X
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society