THE GROUP OF AUTOMORPHISMS OF A CLASS OF FINITE p-GROUPS

BY
ARYE JUHÁSZ

Abstract. Let G be a finite p-group and denote by $K_i(G)$ the members of the lower central series of G. We call G of type (m, n) if (a) G has nilpotency class $m - 1$, (b) $G/K_2(G) = \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$ and $K_i(G)/K_{i+1}(G) = \mathbb{Z}_{p^n}$ for every i, $2 \leq i \leq n - 1$. In this work we describe the structure of $\text{Aut}(G)$ and certain relations between $\text{Out}(G)$ and G.

Introduction. N. Blackburn considered in [1] a special class of finite p-groups, the p-groups of maximal class. Our aim here is to determine the structure of the automorphism group of a wider class of finite p-groups, groups G with nilpotency class $m - 1$, such that $G/K_2(G) \cong \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$ and, for $2 \leq i \leq m - 1$, $K_i(G)/K_{i+1}(G) = \mathbb{Z}_{p^n}$. We call such groups G of type (m, n). Here $K_i(G)$ denotes the ith member of the descending central series of G and m, n are positive natural numbers, $m > 2$. (Thus a p-group of maximal class of order p^m is of type $(m, 1)$.) Such groups were dealt with in [2] and independently in [5]. It becomes clear right at the beginning of our investigation that if G is a p-group of type (m, n) then $\text{Aut}(G)$ has a normal Sylow p-subgroup P and $\text{Aut}(G)/P$ is isomorphic to a subgroup of $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$ (Theorem 1.12). So, naturally, we focus on the structure of P and prove that, roughly, in the splitting of P to three parts by $P \triangleleft G \triangleleft P$, the size of B/G is bounded from below by a number which depends on $Z(G)$ and G' (Theorem 2.3). Under certain conditions this means that G has many outer automorphisms. Here G' denotes the group of the inner automorphisms of G, B stands for the subgroup of $\text{Aut}(G)$ of all automorphisms which fix $G/K_2(G)$ elementwise and P/B is a subgroup of $\text{GL}(2, p^n)$ which is isomorphic to $\text{Aut}(G/K_2(G))$.

In §3 we deal with metabelian p-groups of type (m, n). For these groups our results are more precise: We determine the upper and lower central series of P under certain conditions (which are satisfied by metabelian p-groups of maximal class) and show that B/G has a very similar structure to that of a subgroup of $K_2(G)$. We also give a lower bound for B/G in terms of m, n and p (Theorem 3.2). Here we are working in the endomorphism ring of $K_2(G)$ generated by $G/K_2(G)$ and we use an idea of M. Lazard [8] exploited in [6].

We close by §4 with sharpening our results obtained in §§2 and 3 for p-groups of maximal class.

Received by the editors December 19, 1978 and, in revised form, February 18, 1981.
1980 Mathematics Subject Classification. Primary 20D45; Secondary 20D15.
Key words and phrases. Finite p-group, automorphism group, metabelian group, power-structure of p-groups, commutator-structure of p-groups, p-groups of maximal class.

© 1982 American Mathematical Society
0002-9947/81/0000-1062/$04.25

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
ACKNOWLEDGEMENTS. This work is a part of my doctoral thesis done under the kind supervision of Professor A. Mann. I wish to express my thanks to Professor Mann for his aid during the preparation of it. I am indebted to the referee for pointing out an error in the original version.

0. Notation. We follow the notation of [4, III]. Let G be a finite group. For every $a, b \in G$ define $[a, ob] = a$ and for every $0 < n \in \mathbb{Z}$ define

$$[a, nb] = [[a, (n - 1)b], b].$$

Here $[c, b] = c^{-1}b^{-1}cb$ for every $c, b \in G$. For subsets X and Y of G let $\langle X, Y \rangle$ be the subgroup of G generated by X and Y in G and $[x, y] = \langle [x, y] | x \in X, y \in Y \rangle$. For every $i > 1$ let $K_i(G)$ and $Z_i(G)$ be the ith member of the descending and ascending central series of G, respectively. Abbreviate $Z_i(G)$ by $Z(G)$ and the nilpotency class of G by $\text{cl}(G)$. Denote by $F(G)$ and $\Phi(G)$ Fitting and the Frattini subgroup of G, respectively (see [4, III]). Let p be a fixed prime number. For every natural n, $\Omega_p(G) = \langle x \in G | x^p = 1 \rangle$, $\Theta_p(G) = \langle x^p^n | x \in G \rangle$ and abbreviate the exponent of G by $\text{exp}(G)$. $\text{Aut}(G)$ stands for the group of automorphisms of G and if G is abelian then $\text{End}(G)$ stands for the endomorphism ring of G. For every $\sigma \in \text{Aut}(G)$ and $x \in G$ we denote the action of σ on x by x^σ and write $[x, \sigma]$ for $x^{-1}x^\sigma$. These commutators are defined in the semidirect product of G by $\text{Aut}(G)$; hence all the rules for commutators hold for them. Write "$H \triangle G$" for "H is a normal subgroup of G".

For every element (subgroup) $x \in (X)$ of G denote by $x(x)$ the inner automorphism (group) of G induced by $x(X)$. We shall use freely the following identities of commutators [4, III, pp. 253, 254]: For every $a, b, c \in G$:

$$(a) \ [a, b^{-1}] = [a, b]^{-1},$$

$$(b) \ [a, bc] = [a, c][a, b]^c,$$

$$(c) \ [ab, c] = [a, c]b[a, c],$$

$$(4) \ [a, b^{-1}, c]^b[b, c^{-1}, a]^c[c, a^{-1}b]^a = 1 \ (\text{Witt's identity}).$$

Finally, we recall the collection formula [4, III, p. 317]: For every $a, b \in G$,

$$(ab)p^n = a^p b^p c_2^{p^n} \cdots c_i^{p^n} \cdots c_p^n, \quad c_i \in K_i(\langle a, b \rangle).$$

1. Basic results. Let G be a p-group of type (m, n), $m \geq 4$. For $i \geq 2$ define $G_i = K_i(G)$ and for $i = 1$ define G_1 by $G_1/G_4 = C_{G/G_4}(G_2/G_4)$. If there exists a natural number k such that, for every $i, j \geq 1$, $[G_i, G_j] \leq G_{i+j+k}$, then following N. Blackburn [1], we say that G has degree of commutativity k.

We shall need the following basic properties of p-groups of type (m, n), which we state without proof. They follow easily from the results of N. Blackburn in [1].

Let G be a p-group of type (m, n), $m \geq 4$. Then

(1.1) There exists an element $s_1 \in G$ such that $G_1 = G_2\langle s_1 \rangle$ and $G = \langle s, s_1 \rangle$, for every $s \in G \setminus G_1 \Phi(G)$. If for $i \geq 2$ we define $s_i = \langle s_{i-1}, s \rangle$ then $G_i = \langle G_i, s \rangle$.

Every element in G can be expressed uniquely by $s^{\alpha_0}s_1^{\alpha_1} \cdots s_i^{\alpha_i} \cdots s_{m-1}^{\alpha_{m-1}}$, $\alpha_i \in \mathbb{Z}$, $0 \leq \alpha_i < p^n$.
A CLASS OF FINITE p-GROUPS

(1.2) For every $x \in G \setminus G_1 \Phi(G)$, $x^{p^n} \in G_{m-1}$ and $C_G(x) = \langle x \rangle Z(G)$.

(1.3) For every $x \in G \setminus G_1 \Phi(G)$, $[x, G] = G_2$.

(1.4) $Z_j(G) = G_{m-i}$, for $1 < i < m - 1$.

(1.5) If $m \leq p + 1$, then $\exp(G_2) = \exp(G/G_{m-1}) = p^n$.

(1.6) If $m \geq p + 2$, then $\mathcal{D}_1(G_i) \leq G_{i+p-1}$ and, for $n = 1$, $\mathcal{D}_1(G_i) = G_{i+p-1}$.

(1.7) If $m \geq p + 2$, then

$$s_i^{p^n} \equiv s_i^{(p^n) \mod(G_{p+1})}.$$

(1.8) If G is metabelian then G has degree of commutativity ≥ 1.

(1.9) Let G be metabelian and let $s \in G \setminus G_1 \Phi(G)$ and for $i \geq 1$ let s_i be as defined in (1.1). Then

(a) If $[s_1, s_2] = s_{m-1}^{s_{m-2}} \cdots s_{m-1}^{s_{m-1}}$ then $[s_1, s_j] = s_{m-1}^{s_{m-2}} \cdots s_{m-1}^{s_{m-1}}$, for every $i \geq 2$.

(b) The following are defining relations for G_2:

$$\begin{align*}
&\alpha) s_i^{p^n} \cdots s_i^{(p^n)} \cdots s_{i+p-1} = 1, \text{ for } i \geq 2. \\
&\beta) s_i^{m+1} = 1, \text{ for } \mu \geq 0 \text{ and } [s_i, s_j] = 1 \text{ for } i, j \geq 2.
\end{align*}$$

(1.10) For every $i \geq 1$, $H_i = \langle G_i, s \rangle$ is of type $(m - i + 1, n)$ and has degree of commutativity $i - 1$.

(1.11) In the sequel we shall work in metabelian p-groups of type (m, n). In this case G/G_2 acts by conjugation on the abelian group G_2 and we have

Lemma. Let G be a metabelian p-group of type $(m + 2, n)$, $m \geq 2$, ϕ the natural homomorphism $\phi: \text{Aut}(G) \to \text{Aut}(G_2)$. Let $s \in G \setminus \Phi(G)G_1$ and denote $\alpha = \phi(s)$. Let R be the subring of $\text{End}(G_2)$ generated by α. Then

(a) G_2 is a cyclic R-module, isomorphic to R (as an R-module) by $\theta: R \to G_2$, $\theta(r) = s_2^r$.

(b) $R \cong \mathbb{Z}[t]/\langle (t^{p^n} - 1)/(t - 1), (t - 1)^m \rangle$.

(c) R is a completely primary ring with Jacobson radical $J = \langle \alpha - 1, p \rangle$, as the unique maximal ideal of R and $R/J = F_p$.

(d) The multiplicative group U of the units of R has $1 + J$ as a Sylow p-subgroup.

(e) For every subring K of R which lies in pJ, $1 + K \cong K$ as abelian groups.

(f) If H is a subring of J such that

(a) $\mathcal{D}_1(1 + H) \leq 1 + pH$ and

(b) $|1 + H/\mathcal{D}_1(1 + H)| = |H/pH|$

then $H \cong 1 + H$.

Proof. (a) By (1.9) G_2 is a cyclic R-module generated by s_2. Since $R \leq \text{End}(G_2)$, G_2 is a faithful R-module. Hence $G_2 \cong R$ as R-modules.

(b) Since the defining relations of G_2 are $\prod_{\mu=0}^{p^{n-1}} s_i^{(p^n)} = 1$ for $i \geq 2$ and $s_{m+2} = 1$ by (1.9),

$$s_2^{\sum_{\mu=0}^{p^{n-1}} (p^n)(\alpha - 1)^{p^j} = 1}$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
for every \(j \geq 0 \) and by part (a) the defining relations of \(R \) are

\[
\sum_{\mu=0}^{p^n-1} \left(\frac{p^n}{\mu + 1} \right) (\alpha - 1)^{\mu+j} = 0, \quad j \geq 0 \text{ and } (\alpha - 1)^{\mu} = 0.
\]

Therefore \(R \cong \mathbb{Z}[t]/I \) where

\[
I = \left\langle (t - 1)^m, \sum_{\mu=0}^{p^n-1} \left(\frac{p^n}{\mu + 1} \right) (t - 1)^{\mu+j}, j \geq 0 \right\rangle.
\]

But as

\[
\sum_{\mu=0}^{p^n-1} \left(\frac{p^n}{\mu + 1} \right) (\alpha - 1)^{\mu+j} = \alpha \frac{\alpha^{p^n} - 1}{\alpha - 1},
\]

\(I = \left\langle (t - 1)^m, (t^{p^n} - 1)/(t - 1) \right\rangle \) and the result follows.

(c) and (d) are well-known facts.

(e) It follows by direct calculations that, for \(u \in pJ \), \(\exp(u) \) and \(\ln(1 + u) \) defined in the usual manner are isomorphisms from \(pJ \) to \(1 + pJ \) and from \(1 + pJ \) to \(pJ \), respectively. (For a more general setting see [8].)

(f) Since \(|1 + H| = |H| \), (B) implies that \(|1 + pH| = |pH| = |\Omega_1(1 + H)| \). By (a) this means that \(\Omega_1(1 + H) = 1 + pH \). But by part (e) \(1 + pH \cong pH \), hence \(\Omega_1(1 + H) \cong pH \). Thus \(H \) and \(1 + H \) are two finite abelian \(p \)-groups with the same number of generators and the same set of invariants. Consequently \(H \cong 1 + H \) as abelian \(p \)-groups.

(1.12) Finally, we show that the only nontrivial component of \(\text{Aut}(G) \) is its Sylow \(p \)-subgroup.

Theorem. Let \(G \) be a \(p \)-group of type \((m, n) \), \(m \geq 4, p \geq 3 \). Denote \(A = \text{Aut}(G) \) and let \(B \) be a Sylow \(p \)-subgroup of \(A \). Then

(a) \(|A| \leq p^2(mn - 2)^{l+1} \cdot (p - 1)^2 \).

(b) \(B \triangleleft A \) and \(A \) is a splitting extension of \(B \) by a \(p' \)-Hall subgroup \(Q \), where \(Q \) is isomorphic to a subgroup of \(\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \).

(c) \(A' \leq B \).

(d) \(A \) is solvable.

(e) \(F(A) = B \).

(f) \(m - 2 \leq \text{cl}(B) \leq mn - 1 \).

Proof. We omit the proof of this theorem, as it is straightforward.

2. The structure of the Sylow \(p \)-subgroup of \(\text{Aut}(G) \). It is well known (e.g. [7, Corollary 1]) that if \(G \) is a finite \(p \)-group then \(\text{Aut}(G) \) has the following normal series: \(1 \triangleleft K \triangleleft \text{Aut}(G) \), where \(K \) is the set of all the elements of \(\text{Aut}(G) \) which fixes \(G/K_2(G) \) elementwise and \(\text{Aut}(G)/K \) is isomorphic to the subgroup of all elements \(\text{Aut}(G)/K_2(G) \) which can be extended to an automorphism of \(G \). Obviously \(\overline{G} \cong K \). In Theorem 2.3 we show that for \(p \)-groups of type \((m, n) \), \(K \) is a splitting extension of \(\overline{G} \) by a subgroup of \(\text{Aut}(G) \) which fixes a generator of \(G \). Also, a lower bound for \(|K| \) is given.
(2.1) Proposition. Let \(G \) be a \(p \)-group of type \((m, n)\). Let \(G_1 \leq G \) and let \(u \in G_{m-1} \cap Z(G_1) \), or \(u \in G_2 \) if \(G_2 \) is abelian. Define \(\sigma : G \to G \) by \(\sigma : s \to s, \sigma : s_1 \to s_1u \) and if \(x = s^b \prod_{i=1}^{m-1} s_1^{a_i}, 0 \leq b, a_i < p^n \), then \(\sigma : x \to x \prod_{i=1}^{m-1} u^{a_i} \). Then \(\sigma \) is an automorphism of \(G \) iff \(u_i = [u, (i - 1)s] \), for \(i \geq 2 \).

Proof. \(\sigma \) is a well-defined map of \(G \) on itself. We prove, by induction on \(|G| \), that \(\sigma \) is an automorphism. Let \(G_w \) be the first abelian \(G_i \) and denote \(H_w = \langle G_w, s \rangle \). Then \(H_w \) is a \(p \)-group of type \((m - w + 1, n)\) by (1.10) and it follows easily from (1.9) that \(\sigma_w \), the restriction of \(\sigma \) to \(H_w \), is an automorphism of \(H_w \). Let \(H_2 = \langle G_2, s \rangle \) and assume, by induction, that \(\sigma_2 \) is an automorphism of \(H_2 \). We prove that \(\sigma \) is an automorphism of \(G \).

We show that \([s_i^p, s^p] = s_i^{p+1} \) and \([s_i^p, s_1] = [s_i, s_1]^p\). Since \(u_i \in Z(G_2) \), \([s_i^p, s^p] = [s_i u, s^p] = s_i u s [u_i, s_i] = s_i^{p+1} \).

Now \([s_i^p, s_1] = [s_i u, s_1] = [s_i u, s_1] = [s_i, u s] = [s_i, s_1] = [s_i, s] \).

On the other hand \([s_i, s_1]^p = [s_i, s_1][s_i, s_1] \).

Hence we have to prove
\[[s_i, s_1, s] = [s_i, s, s_1] \]

Assume first that \(G_2 \) is not abelian. Then by assumption \([s_i, s_1, s] = [G_1, \sigma] = G_{l+m-1} = G_1 = 1 \).

(1) \[[s_i, s_1, s] = 1. \]

On the other hand, if \(x \in Z(G_1) \), then \([x, s] \in Z(G_1) \). Consequently \([u_i, s] = 1 \) for \(i > 1 \) and

(2) \[[s_i, s_1, s] = 1. \]

(1) and (2) imply (*).

Assume now that \(G_2 \) is abelian. Let notation be as in Lemma 1.11 and denote by \(\sigma_2 \) the restriction of \(\sigma \) to \(G_2 \). Then \(\sigma_2 \in R \), by the definition of \(\sigma \). Since \([s_i, s_1] \in G_2 \), Lemma 1.11(b) implies \([s_i, s_1, s] = [s_i, s, s_1, s_1] = s_i^{f(\alpha)g(\alpha)} \), where \(f(t), g(t) \in Z[t] \), and \([s_i, s_1, s] = [s_i, s_2, s_1] = s_i^{f(\alpha)g(\alpha)} \). Since \(R \) is commutative, (*) holds.

Finally, if \(v \in G_1 \setminus G_2 \Phi(G_1) \) then by the collection formula

(3) \[(sv)^{p^n} = s^{p^n}v^{p^n} \prod_{i} d_i(s, v), \]

where \(d_i(s, v) \) are certain commutators in \(s \) and \(v \). If \(v = v^o \), then since \(d_i(s, v) s^{p^n}, v^{p^n} \in G_2 \),

(4) \[((sv)^{p^n}) = (sv)^{p^n} \prod_{i} d_i(s, v), \]

Since \([v, s] = u \in G_2 \), \((sv)^{p^n} = (svu)^{p^n} = (sv)^{p^n} \) and, as \((sv)^{p^n} \notin Z(G), (sv)^{p^n} = (sv)^{p^n} \). Hence \((sv)^{p^n} = (sv)^{p^n} \). But then by (4) \((v^{p^n}) = (v^{p^n}) \).
and since G_1/G_2 is cyclic, this proves that $\sigma \in \text{Aut}(G)$. The other direction follows from Witt's identity with $a = s_1$, $b = s^{-1}$ and $c = \sigma$ in formula (\delta) of \S 0.

(2.2) Proposition. Let G be a finite p-group of type (m, n), $m \geq 4$. Then to every $u \in G_2$ there exists a solution of the equation $[s, x]u[u, x] = 1$ in $x \in G_1$.

Proof. We have to prove $u^x = [x, s]$, for some $x \in G_1$. By (1.3) $u = [s, x^{-1}]$ for some $x \in G_1$. So $u^x = [s, x^{-1}] = [s, x]^{-1} x = [x, s]$, by 0(a).

I am indebted to the referee for this short proof.

(2.3) Theorem. Let G be a p-group of type (m, n), $m \geq 4$, and let P be the Sylow p-subgroup of $\text{Aut}(G)$.

Let $A_3 = \{ \sigma \in \text{Aut}(G) \mid [s, \sigma] = 1, [sx, \sigma] \in G_3 \}$ and let B be the subgroup of $\text{Aut}(G)$ which fixes G/G_2 elementwise. Then

(a) $|A_3| \geq |G_{m-l+1} \cap Z(G_1)|$, where $G_i' \leq G_i$ but $G_i' \not< G_i$.

(b) B is a splitting extension of G by A_3.

Proof. (a) follows from Proposition 2.1.

(b) It follows from the definitions of A_3 and \bar{G} that $A_3 \cap \bar{G} = \{1\}$. Hence it remains to show that $A_3 \bar{G} = B$. Obviously $A_3 \bar{G} \leq B$. Let $\sigma \in B, [s, \sigma] = u, [sx, \sigma] = v$. By Proposition 2.2 there is an element $x \in G_1$ such that $[s, x]u[u, x] = 1$. Hence $s^\alpha x = (su)^x = s[s, x]u[u, x] = s$ and $s^\alpha x = s_1 v_1$, where $v_1 = [s_1, x]v[v, x] \in G_2$. Assume that $v_1 = s^\alpha v_1 \equiv s_1 v_1 \mod G_3, 0 \leq \alpha < p^n$. Then $s^\alpha [s^\alpha]$ is an α-invariant: $s \rightarrow s$ and $s_1 [s^\alpha] = s_1 v_1 \equiv s_1 s_2 a v_1 [v_1, s^{-1}] \equiv s_1 s_2 a s_2 \equiv \mod G_3$, i.e. $s^\alpha [s^\alpha] \in A_3$. Therefore $\sigma \in A_3 \bar{G}$. Consequently $B = A_3 \bar{G}$, as required.

Corollary. Let notation be as in the theorem. If G has degree of commutativity l then $|\text{Aut}(G)/\bar{G}| \geq p^\alpha t$, where $t = \min\{m - l - 1, l + 3\}$.

3. Metabelian p-groups of type (m, n). To prove the main result of this section (Theorem 3.2) we need the following:

(3.1) Lemma. Let G, R and ϕ be as defined in Lemma 1.11. For every $i \geq 3$ let $A_i = \{ \alpha \in \text{Aut}(G) \mid [s, \alpha] = 1, [sx, \alpha] \in G_1 \}$ and let $B = \bar{G} A_3$ as in Theorem 2.3. Assume that G has an automorphism τ such that $s^\tau = ss^{-1}$ and $s_1^\tau = s_1 \mod G_3$ and which induces an automorphism on R such that $x^\tau = x + y + xy$, where $x = \phi(s) - 1$ and $y = \phi(s^{-1}) - 1$. Then for every $i \geq 3$

(a) $\phi(A_1) = 1 + x^{-1}R$.

(b) If $Z(G_1) = G_{m-k}$ then $C_{G_3}([1 + x^{-1}, \tau]) \geq G_{m-k-i+2}$, $C_{G_3}([1 + x^i, \tau]) \not\subset G_{m-k-i+1}$ and

$c)$ $[1 + x^{-1}, \tau] \in 1 + x^{i+k-2}R \setminus 1 + x^k R$.

(d) If $\alpha \in A_i \setminus A_{i+1}$ then $[\tau, \alpha] \in \bar{G}_{i-1} A_{i+k-1} \setminus \bar{G}_{i-1} A_{i+k}, for i \leq m - k$ and $[\tau, \alpha] \in \bar{G}_{i-1}$, for $i > m - k$.

Proof. (a) Let $\alpha \in A_i$. Then by Proposition 2.1 there exists a $u \in G_{i+1}$ such that $[s_2, \alpha] = u$. Since G_1 is a cyclic R-module by Lemma 1.11(a), there exists a polynomial $f(t) \in \mathbb{Z}[t] t^{i-1}$ such that $u = s_2^{f(x)}$. We claim that $\phi(\alpha) = 1 + f(x)$. Since $1 + f(x)$ and $\phi(\alpha)$ are R-endomorphisms of G_2, it suffices to show that
A CLASS OF FINITE p-GROUPS

475

To every $y \neq 2$ if $y = [s, a, b]$, $a, b \in \mathbb{Z}$. Therefore, if $[s_1, s_2] \equiv s^b \mod G_{r+1}$ and $(s, p) = 1$ then $s^{x+y}b = [s_1, s_2] \equiv s^b \mod G_{r+1}$ and $(s, p) = 1$, by 1.9(b). Hence if $g(x, y) = \sum a_{x+y}b$ and $b(r-2) + j + a$ attains its minimum for a unique pair (a, b) such that $c_{a,b} \equiv o(p)$, then $g(x, y) = s_j$ if $j^a b = s_j$. But in $g(x, y)$ of (*), $b(r-2) + j + a$ obtains its minimal value for $a = i - 2$ and $b = 1$, as $r \geq 4$ by the definition of G_1, and for this (a, b), $c_{a,b} = -1$. Therefore $s_j^a b = s_j$ iff $[s_{j+i-2}, s_j] = 1$, i.e. $s_{j+i-2} \in \mathbb{Z}(G_1)$. Thus $s_{j+i-2} \in G_{m-k}$, $j + i - 2 \geq m-k$ and $j \geq n - k - i + 2$. By the choice of $j, i = m - k - i + 2$. Hence $G_{m-k+i+2} \subseteq C_{G_2}(1 + x^{i-1}, \tau)$ and $G_{m-k+i+2} \subseteq C_{G_2}(1 + x^{i-1}, \tau)$, as required.

(c) If $[1 + x^{i-1}, \tau] \in 1 + x^R \setminus 1 + x^{i+1}R$ then the smallest j such that $s_j^1(1 + x^{i-1}, \tau) = s_j$ is $j = m - l$. Hence by part (b) $m - k - i + 2 = m - l$, i.e. $l = k + i - 2$, as required.

(d) We prove (d) in four steps.

Step I. $[a, \tau] \in G_2 A_3$. To prove this it suffices to show that $s_j^a \equiv s \mod G_3$ and $s_j^a \equiv s \mod G_3$.

In particular $s_j^a \equiv s \mod G_3$. Clearly $s_j^a \equiv s \mod G_3$. This proves Step I.

Step II. $[a, \tau] \in G_2 A_{i+k} A_{m-1} \setminus G_2 A_{i+k} A_{m-1}$ for $i + k = m - 1$ and $[a, \tau] \in G_2 A_{i+k+1} A_{m-1}$ for $i + k > m - 1$. Let $\tau \in \text{Aut}(G)$ satisfying $[s, \tau] = s_{j-1}^{-1}, [s_1, \tau] \in G_3$. We show that τ induces an automorphism on R by

$$\tau: \sum a_i x^i \to \sum a_i (x + y + xy)^i.$$

Here x and y are as defined in the lemma. Obviously τ maps R onto itself; hence by Lemma 1.11(b) it suffices to show that if $y = f(x), f(t) \in \mathbb{Z}[t]$, then

$$t + f(t) + if(t) \in I \quad \text{and} \quad \sum_{i=1}^{p^a} (p^a)(t + f(t) + if(t))^{i-1} \in I.$$
Here $I = \langle t^m, (1 + t)^{p^s} - 1 \rangle/t$ and we have written t instead of $t - 1$ in Lemma 1.11(b). As $f(t) \in t^2R$, by the definition of s_i, $t + f(t) + tf(t) \in tR$ and $(t + f(t) + tf(t))^m \in t^mR \leq I$. Finally let $\bar{s}_i = [s_i, (i - 1)ss_{i-1}^{-1}]$ for $i \geq 2$. As $ss_{i-1}^{-1} \in G \setminus G_1 \Phi(G)$,

$$\bar{s}_2^p \bar{s}_3^p \cdots \bar{s}_j^{p^{n_j-1}} \cdots \bar{s}_{p^n+1}^p = 1,$$

by 1.9(a). Thus, if R_1 is the subring of $\text{End} G_2$ generated by $\phi_{ss_{i-1}}^{-1}$, then G_2 is a faithful cyclic R_1-module generated by s_2 and

$$\bar{s}_2^p \bar{s}_3^p \cdots \bar{s}_j^{p^{n_j-1}} \cdots \bar{s}_{p^n+1}^p = 1$$

implies that

$$\sum_{i=1}^{n} \binom{p^n}{i} \left(\phi\left(\bar{s}_{s_{i-1}}^{-1}\right) - 1\right)^{i-1} = 0 \quad \text{in } R.$$

Hence

$$\left(\sum_{i=1}^{p^n} \binom{p^n}{i} x^{i-1}\right)^\tau = \sum_{i=1}^{p^n} \binom{p^n}{i} (x + y + xy)^{i-1} = \sum_{i=1}^{p^n} \binom{p^n}{i} ((x + 1)(y + 1) - 1)^{i-1} = 0$$

and $\sum_{i=1}^{n} \binom{p^n}{i}(x + y + xy)^{i-1} = 0$. Therefore by Lemma 1.11(b) the natural homomorphism $\theta: Z[t] \to Z[t]/I$ sends $\sum_{i=1}^{pus^n} \left(\binom{p^n}{i} t + f(t) + tf(t)\right)^{i-1}$ to the zero element of $Z[t]/I$ and $I' = I$. Thus, since τ induces a homomorphism on $Z[t]$, it induces an automorphism on $\text{End} G_1$ and consequently on R. We claim that $\phi([\alpha, \tau]) \in x^{i+k-2}R \setminus x^{i+k-1}R$. Indeed, as τ induces an automorphism on R, $[1 + x^{i-1}, \tau] \in 1 + x^{i+k-2}R \setminus 1 + x^{i+k-1}R$ by part (c) and, for every $r \in R \setminus xR$, $[1 + x^{i-1}, \tau] \in 1 + x^{i+k-1}R$. (The last assertion follows by induction on $m - \deg f(t)$, where $f(x) = r, f(t) \in Z[t]$.) But by the definition of τ, $\phi([\alpha, \tau]) = \phi([\alpha, \tau])$. Consequently $\phi([\alpha, \tau]) = \phi([\alpha, \tau]) = \phi([\alpha, \tau]) = \phi([\alpha, \tau])$. Consequently $\phi([\alpha, \tau]) \in \phi([\alpha, \tau]) = \phi([\alpha, \tau]) = \phi([\alpha, \tau]) = \phi([\alpha, \tau])$. Consequently $\phi([\alpha, \tau]) \in \phi([\alpha, \tau]) = \phi([\alpha, \tau]) = \phi([\alpha, \tau]) = \phi([\alpha, \tau])$. Consequently $\phi([\alpha, \tau]) \in \phi([\alpha, \tau]) = \phi([\alpha, \tau]) = \phi([\alpha, \tau]) = \phi([\alpha, \tau])$. Therefore $s^{[{\alpha, \tau}]} = s^{[{\alpha, \tau}]}$, as $s^{[{\alpha, \tau}]} = s^{[{\alpha, \tau}]}$. By (1) $s^{[{\alpha, \tau}]} \equiv s \mod G_i$. Hence $s^{[{\alpha, \tau}]} \equiv s \mod G_i$ and this means that $[s, g] \in G_i$. Consequently $g \in G_{i-1}$.

Step IV. $[\alpha, \tau] \in \tilde{G}_{i-1} A_{i+k-1} A_{m-1}$. Let $[\alpha, \tau] = \beta \tilde{g}, \tilde{g} \in \tilde{G}_i, \beta \in A_{i+k-1} A_{m-1}$. Then $s^{[{\alpha, \tau}]} = \beta \tilde{g}, \tilde{g} \in \tilde{G}_i, \beta \in A_{i+k-1} A_{m-1}.$ Then $s^{[{\alpha, \tau}]} = s^{[{\alpha, \tau}]}$, as $s^{[{\alpha, \tau}]} = s^{[{\alpha, \tau}]}$. By (1) $s^{[{\alpha, \tau}]} \equiv s \mod G_i$. Hence $s^{[{\alpha, \tau}]} \equiv s \mod G_i$ and this means that $[s, g] \in G_i$. Consequently $g \in G_{i-1}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
the x_h is s_1, and as G is metabelian, we may assume $x_\mu = s_1$. But if $\mu \geq m - k + 1$ then $[x_1, \ldots, x_{\mu - 1}] \in G_{m - k} = Z(G_1)$; consequently $[x_1, \ldots, x_\mu] = 1$. Therefore, $[s_j, \tau] = [u, (j - 1)s]$ for $j \geq m - k + 1$. Consequently, $[v, \tau] = [u, \alpha] = s_1^{f(x)g(x)}$, where $f(t), g(t) \in \mathbb{Z}[t], v = s_2^{f(x)}, u = s_2^{g(x)}$ and $x = \phi(s) - 1$. This implies that $s_1^{\tau\sigma} = (s_1v)^\tau = s_1u \cdot v[v, \tau] = s_1uv[u, \alpha] = (s_1u)^\alpha = s_1^{\tau\sigma}$ and $s_1^{[\alpha, \tau]} = s_1$, as required.

(3.2) **Theorem.** Let G be a metabelian p-group of type (m, n), $m \geq 4$, and for every $i \geq 3$ let $A_i = \{\sigma \in \text{Aut}(G) | [s, \sigma] = 1 \text{ and } [s_1, \sigma] \in G_i\}, A = \{\sigma \in \text{Aut}(G) | [s, \sigma] = 1\}$. Then

(a) $A = A_3 \times \langle \hat{s} \rangle$ is abelian.
(b) $|A_3| = |G_3|$.
(c) Let $H \leq \mathcal{B}(G_3) \mathcal{B}_2(G_2)$ such that $H^i = H$ and let $A_H = \{\sigma \in A | [s_2, \sigma] \in H\}$. Then $A_H / A_H \cap A_{m - 1} \approx H$.
(d) The Sylow p-subgroup P of $\text{Aut}(G)$ is generated by $p^n + 4$ elements.
(e) $K_1(B) = G_1$ and $Z(B) = G_{m - i - 1}A_{m - 1}$. Here $B = G \cdot A_i$.
(f) Assume that G can be embedded in a p-group G_0 of type $(m + 1, n)$ and let B_0 be the set of all the elements of $\text{Aut}(G_0)$ which fix $G_0 / K_2(G_0)$ elementwise. If $Z(G_1) = G_{m - k}$ then $A_{i - (i - 1)(k - 1)}^i < K_1(B_0) < A_{i - (i - 1)(k - 1) + 3} \cdot G_{i - 1}$ and $G_{i - 1}(B_0) = A_{m - i - 1}G_{m - i - 1}$.

Proof. (a) $A = A_3 \times \langle \hat{s} \rangle$ by the definitions of A, A_3, and by Theorem 2.3. Hence we show that A_3 is abelian. Let $\alpha, \beta \in A_3, [s, \alpha] = u, [s, \beta] = v$. Then $s_1^{\alpha\beta} = (s_1u)^\beta = s_1uv[u, \beta]$ and $s_1^{\beta\alpha} = (s_1v)^\alpha = s_1uv[v, \alpha]$. Hence $s_1^{\alpha\beta} = s_1^{\beta\alpha}$ iff $[v, \alpha] = [u, \beta]$. We show $[v, \alpha] = [u, \beta]$. Let R be the ring defined in Lemma 1.11; denote $x = \phi(s) - 1$, where ϕ is the canonical homomorphism from $\text{Aut}(G)$ to $\text{Aut}(G_2)$. Then for every element $a \in G_2$ there exists a polynomial $f_0(t) \in \mathbb{Z}[t]$ such that $a = s_2^{f_0(x)}$. In particular $v = s_2^{f_0(x)}, u = s_2^{g(x)}$ for suitable $f(t), g(t) \in \mathbb{Z}[t]$. Now $[u, \beta] = [u, \phi(\beta)] = s_2^{f_0(x)\phi(\beta) - 1} = s_2^{g(x)}f_0(x) g(x) = \phi(s) - 1 = [v, \alpha]$, as in the proof of Lemma 3.1(a).

(b) Follows from Theorem 2.3(a).
(c) Let notation be as in Lemma 1.11. Then $\theta(pJ) = \mathcal{B}_1(G_3) \cdot \mathcal{B}_2(G_2)$. Hence if $H \leq \mathcal{B}_1(G_3) \cdot \mathcal{B}_2(G_2)$ then $\theta^{-1}(H) \subseteq 1 + pJ$ and, as H is s-invariant, $\theta^{-1}(H) \approx 1 + \theta^{-1}(H)$ by Lemma 1.11(c). But $1 + \theta^{-1}(H) = \phi(A_H)$. Hence $A_{m - 1} / \ker \phi \cap A_{m - 1} \approx 1 + \theta^{-1}(H) \approx \theta^{-1}(H) \approx H$ and $H \approx A_{m - 1} / A_H \cap A_{m - 1}$ as $\ker \phi = G_2A_{m - 1}$ and $A_H \leq A$.

(d) It is not difficult to see that A_3 is generated by $\{\sigma | \sigma; s_1 \rightarrow s_i, 3 \leq i \leq p^n + 2\}$. Hence A_3 is generated by $p^n - 1$ elements and $B = G_1A_3$ is generated by $p^n + 1$ elements. Every p-subgroup of $\text{GL}(2, \mathbb{Z}_p)$ can be generated by 3 elements. Hence P is generated by $p^n + 4$ elements.

(e) By Theorem 2.3(b) $B / G_1 \approx A$ and by part (a) of Theorem 3.2 A is abelian. Hence $K_2(B) \approx G_1$. On the other hand $[\phi(s_1), \phi(A)] = 1$, i.e. $[s_1, A] \approx G_2A_{m - 1}$. Therefore as A is abelian, $K_2(B) = [B, B] = G_1A_3 \leq G_2A_{m - 1} = G_2$. But obviously $G_2 \leq K_2(B)$. Consequently $K_2(B) = G_2$. Since $[G_2, s] = G_{i - 1}$ for $i \geq 2$, we get by induction on i that $K_i(B) = G_i$ for $2 \leq i \leq m - 2$. To determine the upper central series of B determine first $Z(B)$. Let $\sigma \in Z(B), \sigma = \bar{g}_p,$
\[\overline{g} \in \overline{G}, \rho \in A_3. \text{ Since } [s, \sigma] = [\overline{s}, \overline{g}], [s, \overline{g}] = 1 \text{ and } g \in G_{m-2}. \text{ Also, as } G \text{ has degree of commutativity } \geq 1 \text{ by (1.8) and } \overline{g} \in \overline{G}_{m-2}, [s_1, \sigma] = [s_1, \rho] \text{ and } [s_1, \rho] = 1. \text{ This implies that } [s, \rho] \in \overline{G}_{m-1}. \text{ Consequently } \sigma \in \overline{G}_{m-2}A_{m-1} \text{ and } Z(B) \leq \overline{G}_{m-2}A_{m-1}. \text{ But obviously } \overline{G}_{m-2}A_{m-1} \leq Z(B). \text{ Thus } Z(B) = \overline{G}_{m-2}A_{m-1}. \text{ Since } Z(B) \text{ is the kernel of the natural homomorphism } \psi: \text{Aut}(G) \to \text{Aut}(G/G_{m-1}), \text{ we get the results by induction on } cl(G). \]

(f) Since \(G \) may be embedded in \(G_0 \) there exists a \(\tau \in \text{Aut}(G) \) such that \(s^\tau = ss_1^{-1} \) (\(\tau \) plays here the role of \(s_1 \) in \(G \)). Since \(\tau \notin B \) and \(B \triangleleft \text{Aut}(G) \) by Theorem 2.3(b), \(\tau \) acts by conjugation on \(B \) and

\[B_0 = B\langle \tau \rangle, \quad [\overline{s}, \tau] = \overline{s_1} \quad \text{and} \quad [\overline{s}, \tau] = \overline{s_1} \in G_3. \]

We compute \(K_2(B_0) \) and then \(K_i(B_0) \) for \(i > 3 \) by induction on \(i \). Since \(B_0/B \) is cyclic by (2), \(K_2(B_0) = [B_0, B] = [B, A_3][B, \overline{G}]^\tau[A_3, A_3] \cdot [\tau, \overline{G}]^A_1 \leq \overline{G}_1[A_1, A_3] \). By Lemma 3.1(d) \(\tau, A_3] \leq \overline{G}_2A_{k+2}. \text{ Hence } K_2(B_0) \leq \overline{G}_1A_{k+2}. \text{ Since } [\overline{s}, \tau] = \overline{s_1}^{-1}, \overline{G}_1 \leq K_2(B_0). \text{ Now}

\[\overline{G}_i A_j, B_0 = \overline{G}_i[A_j, B_0] = [A_j, B_0]\overline{G}_{i+1} = G_{i+1}[A_j, \langle \tau \rangle B] \]

\[= \overline{G}_{i+1}[A_j, B][A_j, \tau][A_j, \tau, B] \leq G_{i+1}\overline{G}_j A_{j+k-1} \overline{G}_{i+1}\overline{G}_j A_{j+k} \]

by Lemma 3.1(d). Therefore,

\[K_{i+1}(B_0) = [K_i(B_0), B_0] = \overline{G}_{i+1-1}A_{j+i(k-1)} \leq \overline{G}_{i+1}A_{j+i(k-1)} \]

Also, \(\overline{G}_i \leq K_{i+1}(B_0) \), as \(\tau, \overline{s} \in K_{i+1}(B_0) \).

(h) First we compute \(Z(B_0) \). Obviously \(Z(B_0) \leq Z(B) \) as \(Z(B_0) \leq B_0 \). Hence \(Z(B_0) \leq A_{m-1}\overline{G}_{m-2}. \text{ We show that } Z(B_0) = \overline{G}_{m-2}. \text{ Let } \sigma \in A_{m-1} \cap Z(B_0). \text{ Then}

\[[s, \sigma] \in G_{m-1} \text{ and if } [s, \sigma] = z \text{ then } s = s^{\sigma^s \sigma^{s_1} \cdots \sigma^{s_{i-1}}} = (s^{s_1^{-1}})^{s^{-1}} = (s^{-1})^{s_1^{-1}} = [s_1^{-1}, \sigma^{-1}] = s \sigma_1^{-1}. \text{ Hence } z = 1 \text{ and } [s, \sigma] = 1, \text{ i.e. } \sigma = 1. \]

On the other hand \(s_{m-2} = Z(B) \) as \(s_{m-2}^{s_{m-2}^{-1} s^{-1}} = s \) and \(s_{m-2}^{s_{m-2}^{-1} s^{-1}} = s_1 \). Consequently \(Z(B_0) = \overline{G}_{m-2}. \text{ Next we compute } Z_2(B_0). \text{ Let } \psi: \text{Aut}(G) \to \text{Aut}(G/G_{m-1}) \) be the natural homomorphism and let \(B_1 = \psi(B_0) \). Then \(\text{Ker } \psi = \overline{G}_{m-2}A_{m-1} \) and \(\text{Ker } \psi = Z(B_0) \leq \psi^{-1}(Z(B_1)). \text{ For, by Lemma 3.1(d) if } \sigma \in A_{m-1} \text{ then } \sigma, \tau \in \overline{G}_{m-2} = Z(B_0); \text{ hence } \overline{G}_{m-2}A_{m-1} \leq Z_2(B_0). \text{ Also } Z_2(B_0) = \{ \sigma \in B_0 \mid [\sigma, \rho] \in \overline{G}_{m-2} \} \leq \{ \sigma \in B_0 \mid [\sigma, \rho] \in \overline{G}_{m-2}A_{m-1} \} = \psi^{-1}(Z(B_1)). \text{ By direct calculation } [s_{m-2}, \tau] \in \overline{G}_{m-2} = Z(B_0). \text{ Hence as } s_{m-3} \in Z(B), \overline{Z}_2(B_0) = \overline{G}_{m-3}A_{m-1} \leq \psi^{-1}(Z(B_1)) \text{ and } Z_2(B_0) \leq \psi^{-1}(Z(B_1)). \text{ Thus } B_0/Z_2(B_0) \cong B_1/Z(B_1) \text{ and } Z_i(B_0/Z_2(B_0)) \cong Z_i(B_1/Z(B_1)). \text{ Consequently } Z_i(B_0) = \overline{G}_{m-i+1}A_{m-i-1}. \]

4. p-groups of maximal class. By definition a p-group of maximal class is a p-group of type \((m, 1)\). In this case \(G_i/A_i \) is of order \(p \) for \(1 \leq i < m - 1 \) and also \(A_i/A_{i+1} \) is of order \(p \). This makes it possible to strengthen the results of the previous sections.

(4.1) Proposition. Let \(G \) be a p-group of type \((m, n)\), \(m \geq 4 \).

(a) \(G \) can be embedded in a \(p \)-group \(H \) of type \((m + 1, n)\) if and only if \(G \) has an automorphism \(\tau \) such that

1. \(\tau: s \mapsto ss_1^\alpha, s_1 \mapsto s_1 u, \text{ where } \alpha \in Z, 1 \leq \alpha \leq p - 1, \alpha, p = 1 \text{ and } u \in G_3. \]

2. \(\tau^p \in \overline{G}, \tau^p \notin \overline{G}. \)
(b) Assume that \(G \) has degree of commutativity \(k = 1 \). If \(m \leq p + 1 \) and \(\tau \in \text{Aut}(G) \) satisfies (1) of part (a), then \(\tau \) satisfies (2) as well.

Proof. (a) If \(G \) is embedded in a \(p \)-group \(H \) of type \((m + 1, n)\) then \(H \) is generated by two elements \(s \) and \(s_t \) with \([s, s_t] = s_t^{-1}\). So the automorphism induced on \(G \) by \(s \) satisfies (1) and (2) of part (a) of the proposition. Assume that \(G \) has an automorphism \(\tau \) which satisfies (1) and (2). Then by (2) and the definition of \(\tau \), \(H/G \) is cyclic of order \(p^n \). We prove by induction on \(|H|\) that \(H_{m-i} = G_{m-i-1} \), for \(i \geq 0 \). Hence \(H_m = \langle \{\tau, (m - 1)s\} \rangle = G_{m-1} \). Hence by the induction hypothesis for \(G/G_{m-1} \) we get \(H_{m-1}/H_m = K_{m-i-1}(G/G_{m-1}) = G_{m-i-1}/G_{m-1} = G_{m-i-1}/H_m \) for every \(i \geq 1 \). Consequently \(H_{m-i} = G_{m-i-1} \) for \(i \geq 1 \) and \(H \) is of type \((m + 1, n)\), by definition.

(b) Since \(s\tau^{p^{m-1}} = s[s, \tau]^{p^{m-1}} \) mod \(G_2 \) by the collection formula, \(s\tau^{p^{m-1}} = s[s, \tau]^{p^{m-1}} \) mod \(G_2 \) for every \(\tau \) which satisfies (1) of part (a). Since \([s, \tau] \in G_2\) by (1.3) this implies that \([s, \tau] \in G_2\); hence \(\tau^{p^{m-1}} \notin G \). Thus we prove \(\tau^{p^{m}} \notin G \).

By the collection formula \(s_{i}^{\tau^{p^{i}}} = s_{1}^{[s_{1}, \tau]^{p^{i}}} = s_{1}[s_{1}, \tau]^{p^{i}} = c_{2}^{(i)} \ldots c_{p^{n}} \), where \(c_{i} \in K_{i}([s_{1}, \tau], \tau) \) for \(i \geq 2 \). Since \(u = [s_{1}, \tau] \in G_{3}, [s_{1}, \tau, \tau] \leq [G_{3}, \tau] \). Now, \(s_{2}^{\tau^{p}} = [s_{1}, s]^{\tau^{p}} = [s_{1}u, ss_{a}] = s_{2} \) where \(p \in G_{4} \) and by induction on \(i \) we see that \([s_{1}, \tau] \in G_{i+2} \). Hence \(K_{i}([s_{1}, \tau], \tau) \leq G_{i+2} \). In particular, \(c_{p} \in G_{p+2} = 1 \) and \(s_{1}^{\tau^{p}} = s_{1}u^{p} = s_{1} \), as \(\exp(G_{3}) = p^{n} \) by (1.5). By a similar application of the collection formula we get \(s^{\tau^{p}} = s(s_{1})^{\tau^{p}} \) mod \(G_{p} \), by (1.5). We claim that \(\tau^{p^{n}} = s_{p}^{-\beta} \). Indeed, \([s_{1}, s_{p}^{-\beta}] \in G_{p+1} = 1 \) as \(G \) has degree of commutativity \(\geq 1 \) and \([s, s_{p}^{-\beta}] = [s, s_{p-1}]^{-\beta} = [s_{p-1}, s]^{-\beta} = s_{p}^{-\beta} \). Hence with \(\tilde{g} = s_{p}^{-\beta} \) we get \(s\tilde{g} = s^{\tau^{p}}, s\tilde{g} = s^{p} \) and \(\tau^{p^{n}} \in G \), as required.

(4.2) **Theorem.** Let \(G \) be a \(p \)-group of maximal class of order \(p^m \), \(P \) the Sylow \(p \)-subgroup of \(\text{Aut}(G) \) and \(B = \{ \sigma \in P \mid [s, \sigma], [s_{1}, \sigma] \in G_{2} \} \).

(a) If \(G \) can be embedded in a \(p \)-group of maximal class \(G_{0} \) of class \(m \) then \(P = G_{0}B, |P/B| = p \).

(b) If \(G/G_{p+1} \) cannot be embedded in a \(p \)-group of maximal class of order \(p^{n+1} \) and \(G \) has degree of commutativity \(\geq 1 \) then \(P = B \).

(c) If \(m \geq 3p + 6 \) then \(|A_{3}| \leq p^{(m-3p+8)/2} \) for \(p > 3 \) and \(|A_{3}| \leq 3^{((m+1)/2)} \) for \(p = 3 \). Here \(A_{3} = \{ \sigma \in B \mid [s, \sigma] = 1, [s_{1}, \sigma] \in G_{3} \} \) and \((a) \) is the integral part of \(a \), for every \(a \in Q \).

Proof. (a) By (1.1) \(P/B \) is isomorphic to a subgroup of \(\left\{ \begin{array}{c} 1, c \vspace{1em} \end{array} \right\} c \in \mathbb{Z}_{p} \right\} \).

If \(G \) can be embedded in \(G_{0} \) then \(B \neq P \) by Proposition 4.1; hence \(P = G_{0}B \) and \(|P/B| = p \).

(b) If \(G/G_{p} \) cannot be embedded in a \(p \)-group of maximal class of order \(p^{p+1} \) then \(G \) has no automorphism \(\tau \) such that \([s, \tau] \in G_{1}/G_{2} \) and \([s_{1}, \tau] \in G_{3} \), by Proposition 4.1. As every \(\tau \in P/B \) would move \(s \) to \(ss_{a} \) mod \(G_{2} \), this means that \(P = B \).
(c) Assume that G has degree of commutativity k. If i is the smallest j such that $[s_2, s_j] = 1$ then $i + k + 1 = m$, i.e. $i = m - k - 1$. For $m \geq 3p - 6$, $2k \geq m - 3p + 6$ by [3] or [9]. Hence for $m \geq 3p - 6$, $i \leq m - 1 - (m - 3p + 6)/2 \leq [(m - 8 + 3p)/2]$. Hence if $i_0 = [(m - 8 + 3p)/2]$ then $G_{i_0} \leq Z(G_1)$ and the result follows by Proposition 2.1.

(4.3) Theorem. Let G be a metabelian p-group of maximal class of order p^m, $m \geq 4$. Let P be the Sylow p-subgroup of $\text{Aut}(G)$ and for $i \geq 3$ let $A_i = \{s \in P | [s, \sigma] = 1, [s_1, \sigma] \in G_i\}$. Then

(a) $A_i \cong G_i$ for $i \geq 3$.

(b) P is generated by $p + 1$ elements.

(c) If G can be embedded in a p-group of maximal class of order p^{m+1} then $K_i(P) = \overline{G}_{i-1}A_{i-1}(k-1)+3$ and $Z_i(P) = A_{m-i-1}\overline{G}_{m-i-1}$, for $2 \leq i \leq m - 2$.

(d) If G/G_{p+1} cannot be embedded in a p-group of maximal class then $K_i(P) = \overline{G}_{i}$ and $Z_i(P) = A_{m-i-\overline{G}_{m-i-1}}$.

Proof. (a) Let R, $J = J(R)$, ϕ and θ be as in Lemma 1.11, let $x = \phi(s) - 1$ and $H = x^2R$. Then for every $u \in H$, $u^p \in pH$; for $(x + 1)^p = 1$ implies that $x^p = pxr$, $r \in R$. Therefore if $u = f(x)$, $f(t) = \sum_{i=2}^n a_i t^i$, $f(i) \in i^2Z[i]$, then $u^p = \sum_{i=2}^n a_i x^i p \mod px^2R$; hence $u^p \equiv 0 \mod px^2R$, i.e. $u^p \in pH$. Thus $(1 + u)^p \in 1 + pH$ and $\theta(1 + H) = 1 + pH$. Since θ sends H on G_4, H is generated as an abelian group, by x^2, x^3, \ldots, x^p by (1.6) and it follows by induction on $|G|$ that $1 + x^2, \ldots, 1 + x^p$ generate $1 + H$. Hence $H \cong 1 + H$ by Lemma 1.11(f). This means that $A_3/A_{m-1} = H \cong G_4$. Since $G_4 = G_3/G_{m-1}$ by 1.9(b) and (1.10), $G_3/G_{m-1} = A_3/A_{m-1}$. We claim that if $s \in A_{i-1}/A_{i-1}$ then $|s| = |s|$, $m - 1 \leq i \leq 3$. Indeed, by the collection formula $[s_1, \sigma]^p = [s_1, \sigma]^p c_1 \ldots c_p$ where $c_j \in K_j(P), |s_j| = G_{i-1}$. Hence $[s_1, \sigma]^p = [s_1, \sigma]^p \mod G_{i-1}G_{i-1}$. Since $\mathcal{O}_i(G_{i-1}) = G_{2i-1} \cong G_{i-1}$ by (1.5) and $2i + p - 1$, $pi \equiv i + p$ for $i \equiv 2$, we have $[s_1, \sigma]^p \equiv [s_1, \sigma]^p \mod G_{i-1}G_{i-1}$, i.e. $[s_1, \sigma]^p \equiv u^p \mod G_{i-1}G_{i-1}$, where $u = [s_1, \sigma] \in G_{i-1}/G_{i-1}$. But as $u \in G_{i-1}G_{i-1}$ by (1.5), this means that $[s_1, \sigma]^p \in G_{i-1}/G_{i-1}$ and our claim follows. In particular, G_3 and A_3 have the same exponent p^e, say, and to every $1 \leq i \leq e$, $\mathcal{O}_i(A_3) = A_{m-i-1}$ and G_{m-i-1} for $1 \leq i \leq e - 2$. Thus, $G_{m-i-1} \cong G_3$. By (1.10) this implies $A_i \cong G_i$ for $i \geq 3$.

(b) A_3 is generated by $p - 1$ elements. By Theorem 4.2 either $P = \overline{G}_3$ or $P = \overline{G}_3$, where $[\tau, \sigma] = s_1$ mod \overline{G}_2A_3. Hence in any case P can be generated by $p - 1 + 2 = p + 1$ elements.

(c) By Theorem 3.2(f) and (d) $Z_i(P) = A_{i-1}\overline{G}_{i-1}$ and \overline{G}_{i-1} is $K_i(P)$ for $2 \leq i \leq m - 1$. It follows from Lemma 3.1(d) that $[\tau, A_i] \equiv A_{i+k-1} \mod \overline{G}_{i-1}$, hence $K_i(P) \equiv A_{i+k-1} \mod \overline{G}_{i-1}$, and the result follows.

(d) By Theorem 4.2(b) $P = A_{3}\overline{G}_3$. Hence the result follows from Theorem 3.2(e).
REFERENCES

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY CV4 7AL, ENGLAND

Current address: Department of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use