Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hopf manifolds and spectral geometry


Author: Kazumi Tsukada
Journal: Trans. Amer. Math. Soc. 270 (1982), 609-621
MSC: Primary 53C55; Secondary 58G25
DOI: https://doi.org/10.1090/S0002-9947-1982-0645333-2
MathSciNet review: 645333
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize Hopf manifolds in the class of Hermitian manifolds by the spectra of the real Laplacians and the complex Laplacians.


References [Enhancements On Off] (What's this?)

  • [1] E. Bedford and T. Suwa, Eigenvalues of Hopf manifolds, Proc. Amer. Math. Soc. 60 (1976), 259-264. MR 0418172 (54:6214)
  • [2] M. Berger, Le spectre des variétés riemanniennes, Rev. Roumaine Math. Pures Appl. 13 (1968), 915-931. MR 0239535 (39:892)
  • [3] H. Donnelly, Invariance theory of Hermitian manifolds, Proc. Amer. Math. Soc. 58 (1976), 229-233. MR 0407782 (53:11553)
  • [4] P. Gauduchon, Fibrés Hermitiens à endomorphisme de Ricci non negatif, Bull. Soc. Math. France 105 (1977), 113-140. MR 0486672 (58:6375)
  • [5] P. Gilkey, Spectral geometry and the Kaehler condition for complex manifolds, Invent. Math. 26 (1974), 231-258. MR 0346849 (49:11571)
  • [6] -, Correction to spectral geometry and the Kaehler condition for complex manifolds, Invent. Math. 29 (1975), 81-82. MR 0375399 (51:11593)
  • [7] A Gray, Some examples of almost Hermitian manifolds, Illinois J. Math. 10 (1966), 353-366. MR 0190879 (32:8289)
  • [8] T. Kashiwada, Some properties of locally conformal Kaehler manifolds, Hokkaido Math. J. 8 (1979), 191-198. MR 551550 (80k:53042)
  • [9] S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Interscience, New York, 1969.
  • [10] J. Morrow and K. Kodaira, Complex manifolds, Holt, Rinehart and Winston, New York, 1971. MR 0302937 (46:2080)
  • [11] V. Patodi, Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34 (1970), 269-285. MR 0488181 (58:7744)
  • [12] T. Sakai, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J. 23 (1971), 589-603. MR 0303465 (46:2602)
  • [13] K. Tsukada, Eigenvalues of the Laplacian on Calabi-Eckmann manifolds, J. Math. Soc. Japan 33 (1981), 673-691. MR 630631 (82j:58111)
  • [14] I. Vaisman, On locally conformal almost Kaehler manifolds, Israel J. Math. 24 (1976), 338-351. MR 0418003 (54:6048)
  • [15] -, Locally conformal Kaehler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284. MR 557668 (81e:53053)
  • [16] -, Remarkable operators and commutation formulas on locally conformal Kaehler manifolds, Compositio Math. 40 (1980), 287-299. MR 571051 (81j:53063)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C55, 58G25

Retrieve articles in all journals with MSC: 53C55, 58G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0645333-2
Keywords: Hopf manifolds, Hermitian metric, l.c.K. manifolds, Laplacian, eigenvalues, isospectral problem
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society