Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The Hodge theory of flat vector bundles on a complex torus


Author: Jerome William Hoffman
Journal: Trans. Amer. Math. Soc. 271 (1982), 117-131
MSC: Primary 32J25; Secondary 10F35, 14C30, 14K20, 32L20
DOI: https://doi.org/10.1090/S0002-9947-1982-0648081-8
MathSciNet review: 648081
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Hodge spectral sequence of a local system on a compact, complex torus by means of the theory of harmonic integrals. It is shown that, in some cases, Baker's theorems concerning linear forms in the logarithms of algebraic numbers may be applied to obtain vanishing theorems in cohomology. This is applied to the study of Betti and Hodge numbers of compact analytic threefolds which are analogues of hyperelliptic surfaces. Among other things, it is shown that, in contrast to the two-dimensional case, some of these varieties are nonalgebraic.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 0131423, https://doi.org/10.1112/plms/s3-7.1.414
  • [1] Alan Baker, Transcendental number theory, Cambridge University Press, London-New York, 1975. MR 0422171
  • [2] P. Deligne, Équations différentielles à points, Singuliers Réguliers, Lecture Notes in Math., vol. 163, Springer-Verlag, Berlin and New York.
  • [3] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 0498551
    Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 0498552
  • [4] -, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 107-126.
  • [5] Phillip Griffiths and Wilfried Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 31–127. MR 0419850
  • [6] Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119–221 (French). MR 0102537
  • [7] -, Sur le mémoire de Weil: Généralisation des fonctions Abéliennes, Séminaire Bourbaki, Exposé 141, 1956/57.
  • [8] Heisuke Hironaka, An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures, Ann. of Math. (2) 75 (1962), 190–208. MR 0139182, https://doi.org/10.2307/1970426
  • [9] James Morrow and Kunihiko Kodaira, Complex manifolds, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1971. MR 0302937
  • [10] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1970. MR 0282985
  • [11] J. P. Serre, Travaux de Baker, Séminaire Bourbaki, Exposé 368, 1969/70.
  • [12] T. Suwa, On hyperelliptic surfaces, J. Math. Soc. Japan. 22 (1970), 469-476.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32J25, 10F35, 14C30, 14K20, 32L20

Retrieve articles in all journals with MSC: 32J25, 10F35, 14C30, 14K20, 32L20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0648081-8
Article copyright: © Copyright 1982 American Mathematical Society