Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Derivations into the integral closure


Authors: Richard Draper and Klaus Fischer
Journal: Trans. Amer. Math. Soc. 271 (1982), 283-298
MSC: Primary 32B05; Secondary 13B10, 13B20, 32B30
DOI: https://doi.org/10.1090/S0002-9947-1982-0648093-4
MathSciNet review: 648093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a reduced analytical $ k$-algebra of dimension $ r$ and $ A' $ its integral closure in the full ring of quotients of $ A$. We investigate the condition on $ A$ that there exist $ r$ elements $ {x_1}, \ldots ,{x_r}$ in $ A$ and $ k$-derivations $ {d_1}, \ldots ,{d_r}$ from $ A$ into $ A' $ so that $ {d_i}({x_j})$ is the $ r \times r$ identity matrix and so that $ {d_1}, \ldots ,{d_r}$ freely generate $ {\operatorname{Der} _k}(A,\,A' )$. We show this is equivalent to a number of other conditions. If $ A$ is a complete intersection, then the above is equivalent to the Jacobian ideal $ J$ becoming principal in $ A' $. If $ A / \sqrt J $ is regular of dimension $ r - 1$ and satisfies the above condition, then $ A' $ is regular.


References [Enhancements On Off] (What's this?)

  • [A1] S. S. Abhyankar, Local analytic geometry, Academic Press, New York, 1964. MR 0175897 (31:173)
  • [A2] -, A remark on the nonnormal locus of an analytic space, Proc. Amer. Math. Soc. 15 (1964), 505-508. MR 0160936 (28:4145)
  • [AM] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969. MR 0242802 (39:4129)
  • [B] R. Berger, R. Kiehl, E. Kunz and H.-J. Nastold, Differentialrechnung in der analytischen Geometrie, Lecture Notes in Math., vol. 38, Springer-Verlag, Berlin and New York, 1967. MR 0224870 (37:469)
  • [DF] R. Draper and K. Fischer, Derivations and small $ {C_4}$, Commutative Algebra: Analytic Methods, Series in Pure and Appl. Math., Dekker, New York, 1982. MR 655799 (84i:32008b)
  • [L1] J. Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874-898. MR 0186672 (32:4130)
  • [L2] -, On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc. 21 (1969), 422-426. MR 0237511 (38:5793)
  • [N] M. Nagata, Local rings, Interscience, New York, 1962. MR 0155856 (27:5790)
  • [Nc] D. G. Northcott, An introduction to homological algebra, Cambridge Univ. Press, New York, 1962. MR 2482987 (2009m:18012)
  • [Si] A. Simis, When are projective modules free?. Queen's Paper in Pure and Appl. Math., No. 21, 1969. MR 0255599 (41:260)
  • [S] J. Stutz, Analytic sets as branched coverings, Trans. Amer. Math. Soc. 166 (1972), 241-259. MR 0324068 (48:2420)
  • [W] H. Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology, S. Cairns (Ed.), Princeton Univ. Press, Princeton, N. J., 1965. MR 0188486 (32:5924)
  • [Z1] O. Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507-536. MR 0177985 (31:2243)
  • [Z2] -, Studies in equisingularity. II. Equisingularity in codimension $ 1$ (and characteristic zero), Amer. J. Math. 87 (1965), 972-1006. MR 0191898 (33:125)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32B05, 13B10, 13B20, 32B30

Retrieve articles in all journals with MSC: 32B05, 13B10, 13B20, 32B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0648093-4
Keywords: Derivations, integral closure, reduced analytical $ k$-algebra, Jacobian ideal, complete intersection, ramified primes
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society