Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Balanced Howell rotations of the twin prime power type


Authors: Ding Zhu Du and F. K. Hwang
Journal: Trans. Amer. Math. Soc. 271 (1982), 415-421
MSC: Primary 05B15; Secondary 90D12
DOI: https://doi.org/10.1090/S0002-9947-1982-0654841-X
MathSciNet review: 654841
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove by construction that a balanced Howell rotation for $ n$ players always exists if $ n = {p^r}{q^s}$ where $ p$ and $ q \ne 3$ are primes and $ {q^s} = {p^r} + 2$. This generalizes a much weaker previous result. The construction uses properties of a Galois domain which is a direct sum of two Galois fields.


References [Enhancements On Off] (What's this?)

  • [1] E. R. Berlekamp and F. K. Hwang, Constructions for balanced Howell rotations for bridge tournaments, J. Combin. Theory Ser. A 12 (1972), 159-166. MR 0309757 (46:8862)
  • [2] D.-Z. Du and F. K. Hwang, Symmetrical skew balanced starters and complete balanced Howell rotations, Trans. Amer. Math. Soc. 271 (1982), 409-413. MR 654840 (83h:05018)
  • [3] F. K. Hwang, New constructions for balanced Howell rotations, J. Combin. Theory Ser. A 21 (1976), 44-51. MR 0427106 (55:142)
  • [4] F. K. Hwang, Q. D. Kang and J. E. Yu, Complete balanced Howell rotations for $ 16k + 12$ teams (to appear).
  • [5] E. T. Parker and A. N. Mood, Some balanced Howell rotations for duplicate bridge sessions, Amer. Math. Monthly 62 (1955), 714-716. MR 0073552 (17:449d)
  • [6] P. J. Schellenberg, Constructions for (balanced) Room squares, Aequationes Math. 9 ( 1973), 75-90. MR 0316279 (47:4827)
  • [7] T. Storer, Cyclotomy and difference sets, Markham, Chicago, I11., 1967. MR 0217033 (36:128)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05B15, 90D12

Retrieve articles in all journals with MSC: 05B15, 90D12


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0654841-X
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society