A remainder formula and limits of cardinal spline interpolants

Authors:
T. N. T. Goodman and S. L. Lee

Journal:
Trans. Amer. Math. Soc. **271** (1982), 469-483

MSC:
Primary 41A15

DOI:
https://doi.org/10.1090/S0002-9947-1982-0654845-7

MathSciNet review:
654845

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Peano-type remainder formula

**[1]**A. S. Cavaretta, Jr.,*On cardinal perfect splines of least sup-norm on the real axis*, J. Approx. Theory**8**(1973), 285-303. MR**0350263 (50:2756)****[2]**Carl de Boor and I. J. Schoenberg,*Cardinal interpolation and spline functions*. VIII.*The Budan-Fourier theorem for splines and applications*, Spline Functions (Proc. Internat. Sympos., Karlsruhe, 1975), Lecture Notes in Math., vol. 501, Springer-Verlag, Berlin and New York, 1976, pp. 1-79. MR**0493059 (58:12097c)****[3]**P. J. Davis,*Interpolation and approximation*, Blaisdell, Waltham, Mass., 1963. MR**0157156 (28:393)****[4]**T. N. T. Goodman,*Necessary conditions for the convergence of cardinal Hermite splines as their degree tends to infinity*, Trans. Amer. Math. Soc.**255**(1979), 231-241. MR**542878 (81b:41012)****[5]**T. N. T. Goodman and S. L. Lee,*The Budan-Fourier theorem and Hermite-Birkhoff spline interpolation*, Trans. Amer. Math. Soc.**271**(1982), 451-467. MR**654844 (83e:41014)****[6]**M. J. Marsden and S. D. Riemenschneider,*Cardinal Hermite spline interpolation*:*convergence as the degree tends to infinity*, Trans. Amer. Math. Soc.**235**(1976), 221-244. MR**0463752 (57:3692)****[7]**C. A. Micchelli,*Oscillation matrices and cardinal spline interpolation*, Studies in Spline Functions and Approximation Theory, Academic Press, New York, 1976, pp. 163-201. MR**0481735 (58:1834)****[8]**F. Richards and I. J. Schoenberg,*Notes on spline functions*. IV.*A cardinal spline analogue of the theorem of the brothers Markov*, Israel J. Math.**16**(1973), 94-102. MR**0425439 (54:13394)****[9]**I. J. Schoenberg,*Notes on spline functions*. III.*On the convergence of the interpolating cardinal spline as their degree tends to infinity*, Israel J. Math.**16**(1973), 87-93. MR**0425438 (54:13393)****[10]**-,*On the remainders and convergence of cardinal spline interpolation for almost periodic functions*, Studies in Spline Functions and Approximation Theory, Academic Press, New York, 1976, pp. 277-303. MR**0481739 (58:1838)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A15

Retrieve articles in all journals with MSC: 41A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0654845-7

Article copyright:
© Copyright 1982
American Mathematical Society