On the construction of relative genus fields

Author:
Gary Cornell

Journal:
Trans. Amer. Math. Soc. **271** (1982), 501-511

MSC:
Primary 12A65

MathSciNet review:
654847

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show how to construct the relative genus field in many cases. This is then applied to constructing fields with interesting class groups.

**[1]**A. Brumer,*On the Picard group of*(to appear).**[2]**G. Cornell,*Relative genus theory and the class group of*-*extensions*(in preparation).**[3]**-,*A note on the*-*extension of*(in preparation).**[4]**G. Frey, MR**50**#2126.**[5]**A. Frölich,*The genus field and genus group in finite number fields. I, II*, Mathematika**6**(1959), 40–46, 142–146. MR**0113868****[6]**-,*The genus field and genus group in finite number fields*. II, Mathematica**6**(1959), 142-146.**[7]**Yoshiomi Furuta,*The genus field and genus number in algebraic number fields*, Nagoya Math. J.**29**(1967), 281–285. MR**0209260****[8]**Makoto Ishida,*The genus fields of algebraic number fields*, Lecture Notes in Mathematics, Vol. 555, Springer-Verlag, Berlin-New York, 1976. MR**0435028****[9]**Kenkichi Iwasawa,*A note on class numbers of algebraic number fields*, Abh. Math. Sem. Univ. Hamburg**20**(1956), 257–258. MR**0083013****[10]**H. Kisilevsky,*Some results related to Hilbert’s Theorem 94*, J. Number Theory**2**(1970), 199–206. MR**0258793****[11]**Serge Lang,*Algebraic number theory*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR**0282947****[12]**Lawrence C. Washington,*Introduction to cyclotomic fields*, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR**718674**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
12A65

Retrieve articles in all journals with MSC: 12A65

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1982-0654847-0

Article copyright:
© Copyright 1982
American Mathematical Society