Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalized skew polynomial rings


Author: John Dauns
Journal: Trans. Amer. Math. Soc. 271 (1982), 575-586
MSC: Primary 16A05; Secondary 16A02
DOI: https://doi.org/10.1090/S0002-9947-1982-0654851-2
MathSciNet review: 654851
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a totally ordered cancellative semigroup $ \Gamma $, a skew field $ K$, let $ K[\Gamma ;\phi ]$ be a skew semigroup ring. If $ x \in \Gamma ,\,k \in K$, then $ kx = x{k^x}$, where $ k \to {k^x}$ is an endomorphism of $ K$ depending on $ x$. Ideals of $ K[\Gamma ;\phi ]$ are investigated for various semigroups or groups $ \Gamma $.


References [Enhancements On Off] (What's this?)

  • [1] P. M. Cohn, Free rings and their relations, London Math. Soc. Monographs, Academic Press, London, 1971. MR 0371938 (51:8155)
  • [2] -, Skew field constructions, Cambridge Univ. Press, London, 1977. MR 0463237 (57:3190)
  • [3] P. Conrad, Ordered semigroups, Nagoya Math. J. 16 (1960), 51-64. MR 0109850 (22:735)
  • [4] P. Conrad and J. Dauns, An embedding theorem for lattice ordered fields, Pacific J. Math. 30 (1969), 385-398. MR 0246859 (40:128)
  • [5] P. Conrad and P. McCarthy, The structure of $ f$-algebras, Math. Nachr. 58 (1973), 169-191. MR 0330000 (48:8339)
  • [6] J. Dauns, Integral domains that are not embeddable in division rings, Pacific J. Math. 34 (1970), 27-31. MR 0279018 (43:4744)
  • [7] -, Semigroup power series rings, Pacific J. Math. 34 (1970), 365-369. MR 0269569 (42:4464)
  • [8] -, Embeddings in division rings, Trans. Amer. Math. Soc. 150 (1970), 287-299. MR 0262291 (41:6901)
  • [9] -, Ordered domains, Symposia Mathematicae, vol. 21, Academic Press, London, 1977, pp. 565-587. MR 0485619 (58:5444)
  • [10] -, Noncyclic division rings, Math. Z. 169 (1979), 195-204.
  • [11] -, Generalized semigroup rings, Algebra Carbondale 1980, Lecture Notes in Math., vol. 848, Springer, New York, 1981. MR 613190 (82f:20096)
  • [12] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York; Addison-Wesley, Reading, Mass., 1963. MR 0171864 (30:2090)
  • [13] -, Teilweise geordnete algebraische Strukturen, Akad. Kiado, Budapest, 1966.
  • [14] C. Holland, A totally ordered integral domain with a convex left ideal which is not an ideal, Proc. Amer. Math. Soc. 11 (1960), 703. MR 0125140 (23:A2446)
  • [15] N. Jacobson, The theory of rings, Math. Surveys, no. 2, Amer. Math. Soc., Providence, R.I., 1943. MR 0008601 (5:31f)
  • [16] A. V. Jategaonkar, Left principal ideal domains, J. Algebra 8 (1968), 148-155. MR 0218387 (36:1474)
  • [17] A. I. Malcev, On embedding of group algebra in a division ring, Dokl. Akad. Nauk SSSR 60 (1948), 1499-1501. MR 0025457 (10:8c)
  • [18] S. Montgomery and D. S. Passman, Crossed products over prime rings, Israel J. Math. 31 (1978), 224-256. MR 516150 (80a:16022)
  • [19] D. S. Passman, Algebraic structure of group rings, Wiley-Interscience, New York, 1977. MR 470211 (81d:16001)
  • [20] W. Powell, Projectives in a class of lattice ordered modules, Algebra Universalis (to appear). MR 631407 (83a:06026)
  • [21] M. Satyanarayana, Principal right ideal semigroups, J. London Math. Soc. 3 (1971), 549-553. MR 0283115 (44:348)
  • [22] S. Steinberg, An embedding theorem for commutative lattice-ordered domains, Proc. Amer. Math. Soc. 31 (1972), 409-416. MR 0285464 (44:2682)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A05, 16A02

Retrieve articles in all journals with MSC: 16A05, 16A02


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0654851-2
Keywords: Totally ordered group and semigroup, skew polynomial ring, skew group ring, group power series division ring, valuation, simple ring
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society