Asymptotic estimates of sums involving the Moebius function. II

Author:
Krishnaswami Alladi

Journal:
Trans. Amer. Math. Soc. **272** (1982), 87-105

MSC:
Primary 10H15; Secondary 10H25

DOI:
https://doi.org/10.1090/S0002-9947-1982-0656482-7

MathSciNet review:
656482

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a positive integer and the Moebius function. If , let denote its largest prime factor and put . We study the asymptotic behavior of the sum as and discuss a few applications.

**[1]**K. Alladi,*Duality between prime factors and an application to the prime number theorem for arithmetic progressions*, J. Number Theory**9**(1977), 436-451. MR**0476666 (57:16225)****[2]**-,*Asymptotic estimates of sums involving the Moebius function*, J. Number Theory (to appear). MR**644903 (83h:10080a)****[3]**T. M. Apostol,*Introduction to analytic number theory*, Springer-Verlag, Berlin and New York, 1976. MR**0434929 (55:7892)****[4]**N. G. de Bruijn,*On the number of uncancelled elements in the Sieve of Eratosthenes*, Indag. Math.**12**(1950), 247-256.**[5]**-,*On the number of integers**and free of prime factors*, Indag. Math.**13**(1951), 50-60.**[6]**-,*On the asymptotic behavior of a function occurring in the theory of primes*, J. Indian Math. Soc.**15**(1951), 25-32. MR**0043838 (13:326f)****[7]**K. Chandrasekharan,*Arithmetical functions*, Springer-Verlag, Berlin and New York, 1970. MR**0277490 (43:3223)****[8]**H. R. Halberstam and H.-E. Richert,*Sieve methods*, Academic Press, New York, 1974. MR**0424730 (54:12689)****[9]**B. V. Levin and A. S. Fainleib,*Applications of some integral equations to problems of number theory*, Russian Math. Surveys**22**(1967), 119-204.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
10H15,
10H25

Retrieve articles in all journals with MSC: 10H15, 10H25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0656482-7

Keywords:
Moebius function,
asymptotic estimate,
largest and smallest prime factors

Article copyright:
© Copyright 1982
American Mathematical Society