Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homotopy in functor categories


Author: Alex Heller
Journal: Trans. Amer. Math. Soc. 272 (1982), 185-202
MSC: Primary 55U35; Secondary 18A25, 18G55
DOI: https://doi.org/10.1090/S0002-9947-1982-0656485-2
Erratum: Trans. Amer. Math. Soc. 279 (1983), 429.
MathSciNet review: 656485
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ {\mathbf{C}}$ is a small category enriched over topological spaces the category $ {\mathcal{J}^{\mathbf{C}}}$ of continuous functors from $ {\mathbf{C}}$ into topological spaces admits a family of homotopy theories associated with closed subcategories of $ {\mathbf{C}}$. The categories $ {\mathcal{J}^{\mathbf{C}}}$, for various $ {\mathbf{C}}$, are connected to one another by a functor calculus analogous to the $ \otimes $, Hom calculus for modules over rings. The functor calculus and the several homotopy theories may be articulated in such a way as to define an analogous functor calculus on the homotopy categories. Among the functors so described are homotopy limits and colimits and, more generally, homotopy Kan extensions. A by-product of the method is a generalization to functor categories of E. H. Brown's representability theorem.


References [Enhancements On Off] (What's this?)

  • [1] D. W. Anderson, Axiomatic homotopy theory (preprint). MR 557184 (81c:55031)
  • [2] G. Baumslag, E. Dyer and A. Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980), 1-47. MR 549702 (81i:55012)
  • [3] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin, Heidelberg and New York, 1973. MR 0365573 (51:1825)
  • [4] A. Heller, Abstract homotopy in categories of fibrations and the spectral sequence of Eilenberg and Moore, Illinois J. Math. 16 (1972), 454-474. MR 0310890 (46:9988)
  • [5] -, Adjoint functor and bar constructions, Adv. in Math. 12 (1974), 8-31. MR 0334266 (48:12585)
  • [6] -, On the homotopy theory of topogenic groups and groupoids, Illinois J. Math. 24 (1980), 576-605. MR 586797 (83c:55017)
  • [7] -, On the representability of homotopy functors, J. London Math. Soc. (2) 23 (1981), 551-562. MR 616562 (82h:55012)
  • [8] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math., Vol. 5, Springer-Verlag, New York, Heidelberg and Berlin, 1971. MR 0354798 (50:7275)
  • [9] D. MacDuff, On the classifying spaces of discrete monoids, Topology 18 (1979), 313-320. MR 551013 (81d:55020)
  • [10] D. Quillen, Homotopical algebra, Lecture Notes in Math., vol. 43, Springer-Verlag, Berlin, Heidelberg and New York, 1967. MR 0223432 (36:6480)
  • [11] G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Etudés Sci. Publ. Math. 34 (1968), 105-112. MR 0232393 (38:718)
  • [12] N. Steenrod, Milgram's classifying space of a topological group, Topology 7 (1968), 135-152. MR 0233353 (38:1675)
  • [13] R. Vogt, Homotopy limits and colimits, Math. Z. 134(1973), 11-52. MR 0331376 (48:9709)
  • [14] -, Commuting homotopy limits, Math. Z. 153 (1977), 59-82. MR 0451237 (56:9524)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55U35, 18A25, 18G55

Retrieve articles in all journals with MSC: 55U35, 18A25, 18G55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0656485-2
Keywords: Abstract homotopy, functor category, homotopy limit, homotopy Kan extension, half-exact functor
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society