Generalized Lefschetz numbers

Author:
S. Y. Husseini

Journal:
Trans. Amer. Math. Soc. **272** (1982), 247-274

MSC:
Primary 55M20

DOI:
https://doi.org/10.1090/S0002-9947-1982-0656489-X

MathSciNet review:
656489

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given , where is a finitely-generated -projective chain complex, and -chain map, with being a homomorphism, then the generalized Lefschetz number of is defined as the alternating sum of the -Reidemeister trace of . In analogy with the ordinary Lefschetz number, is shown to satisfy the commutative property and to be invariant under -chain homotopy. Also, when is -projective,

**[1]**R. F. Brown,*The Lefschetz Fixed Point Theorem*, Scott, Foresman & Co., Glenview, Ill., 1971. MR**0283793 (44:1023)****[2]**S. Eilenberg and N. E. Steenrod,*Foundations of algebraic topology*, Princeton Univ. Press, Princeton, N.J., 1951.**[3]**E. Fadell and S. Y. Husseini,*Fixed point theory for non-simply connected manifolds*, Topology**20**(1981), 53-92. MR**592570 (82c:55002)****[4]**D. H. Gottlieb,*A certain subgroup of the fundamental group*, Amer. J. Math.**87**(1965), 840-856. MR**0189027 (32:6454)****[5]**D. McCord,*An estimate of the Nielsen number and an example concerning the Lefschetz Fixed Point Theorem*, Pacific J. Math.**66**(1976), 195-203. MR**0433443 (55:6419)****[6]**J. Stallings,*Centerless groups--an algebraic formulation of Gottlieb's Theorem*, Topology**4**(1965), 129-134. MR**0202807 (34:2666)****[7]**K. Reidemeister,*Automorphismen von Homotopie Kettenringen*, Math. Ann.**112**(1936), 586-593. MR**1513064****[8]**F. Wecken,*Fixpunktklassen*. II, Math. Ann.**118**(1941/43), 216-234. MR**0010280 (5:275a)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55M20

Retrieve articles in all journals with MSC: 55M20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0656489-X

Article copyright:
© Copyright 1982
American Mathematical Society