Levi geometry and the tangential Cauchy-Riemann equations on a real analytic submanifold of

Author:
Al Boggess

Journal:
Trans. Amer. Math. Soc. **272** (1982), 351-374

MSC:
Primary 32F20; Secondary 32F25, 35N15

DOI:
https://doi.org/10.1090/S0002-9947-1982-0656494-3

MathSciNet review:
656494

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The relationship between the Levi geometry of a submanifold of and the tangential Cauchy-Riemann equations is studied. On a real analytic codimension two submanifold of , we find conditions on the Levi algebra which allow us to locally solve the tangential Cauchy-Riemann equations (in most bidegrees) with kernels. Under the same conditions, we show that, locally, any CR-function is the boundary value jump of a holomorphic function defined on some suitable open set in . This boundary value jump result is the best possible result because we also show that there is no one-sided extension theory for such submanifolds of . In fact, we show that if is a real analytic, generic, submanifold of (any codimension) where the excess dimension of the Levi algebra is *less* than the real codimension, then is not extendible to *any* open set in .

**[**A. Boggess,**AB**]*Kernels for the tangential Cauchy Riemann equations*, Ph.D. thesis, Rice Univ., May, 1979; Trans. Amer. Math. Soc.**262**(1980), 1-50. MR**583846 (82b:32030)****[**E. Cartan,**C**]*Les systèmes différentiels extérieurs et leurs applications géométriques*, Hermann, Paris, 1945.**[**H. Flanders,**F**]*Differential forms with applications to the physical sciences*, Academic Press, New York, 1963. MR**0162198 (28:5397)****[**R. B. Gardner,**G**]*Invariants of Pfaffian systems*, Trans. Amer. Math. Soc.**126**(1967), 514-533. MR**0211352 (35:2233)****[**S. J. Greenfield,**Gr**]*Cauchy Riemann equations in several variables*, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat.**22**(1968), 275-314. MR**0237816 (38:6097)****[**G. M. Henkin,**H**]*The H. Lewy equation and analysis of pseudo-convex manifolds*, Uspehi Mat. Nauk**32**(1977), 57-118; Russian Math. Surveys**32**(1977), 59-130. MR**0454067 (56:12318)****[**L. Hörmander,**Ho**]*An introduction to complex analysis in several variables*, Van Nostrand, Princeton, N. J., 1966. MR**0203075 (34:2933)****[**R. Harvey and J. Polking,**HP**]*Fundamental solutions in complex analysis*. I, II, Duke Math. J.**46**(1979), 253-300, 301-340.**[**C. D. Hill and G. Taiani,**HT**]*Families of analytic discs in**with boundaries on a prescribed**-submanifold*(preprint).**[**L. R. Hunt and R. O. Wells,**HW**]*Extension of**-functions*, Amer. J. Math.**98**(1976), 805-820. MR**0432913 (55:5892)****[**R. Nirenberg,**N**]*On the H. Lewy extension phenomenon*, Trans. Amer. Math. Soc.**168**(1972), 337-356. MR**0301234 (46:392)****[**R. Nirenberg and R. O. Wells,**NW**]*Approximation theorems on differentiable submanifolds of a complex manifold*, Trans. Amer. Math. Soc.**142**(1969), 15-25. MR**36**#7140. MR**0245834 (39:7140)****[**G. Tomassini,**T**]*Trace delle funzioni olomorphe sulle sorrovarieta analytiche reali d'una varieta complessa*, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat.**20**(1966), 31-43. MR**0206992 (34:6808)****[**R. O. Wells, Jr.,**W**]*Holomorphic hulls and holomorphic convexity of differentiable submanifolds*, Trans. Amer. Math. Soc.**132**(1968), 245-262. MR**0222340 (36:5392)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32F20,
32F25,
35N15

Retrieve articles in all journals with MSC: 32F20, 32F25, 35N15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0656494-3

Article copyright:
© Copyright 1982
American Mathematical Society