Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Left definite multiparameter eigenvalue problems


Author: Paul Binding
Journal: Trans. Amer. Math. Soc. 272 (1982), 475-486
MSC: Primary 47A70
DOI: https://doi.org/10.1090/S0002-9947-1982-0662047-3
MathSciNet review: 662047
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem

$\displaystyle (\ast)\qquad{T_m}{x_m} = \sum\limits_{n = 1}^k {{\lambda _n}{V_{mn}}{x_m},\qquad 0 \ne } {x_m} \in {H_m},\,m = 1, \ldots ,k,$

where $ {T_m}$ and $ {V_{mn}}$ are selfadjoint linear operators on separable Hilbert spaces $ {H_m}$, with $ {T_m}$ positive, $ T_m^{ - 1}$ compact and $ {V_{mn}}$ bounded. We assume ``left definiteness'' which involves positivity of certain linear combinations of cofactors in the determinant with $ (m,\,n)$th entry $ ({x_m},\,{V_{mn}}{x_m})$.

We establish a spectral theory for $ (\ast)$ that is in some way simpler and more complete than those hitherto available for this case. In particular, we make use of operators $ {B_n} = \Delta _n^{ - 1}{\Delta _0}$, where the $ {\Delta _n}$ are determinantal operators on $ \otimes _{m = 1}^k{H_m}$. This complements an established approach to the alternative ``right definite'' problem (where $ {\Delta _0}$ is positive) via the operators $ {\Gamma_n} = \Delta _0^{ - 1}{\Delta _n}$.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, Multiparameter eigenvalue problems, Vol. 1, Academic Press, New York and London, 1972. MR 0451001 (56:9291)
  • [2] P. A. Binding, Another positivity result for determinantal operators, Proc. Roy. Soc. Edinburgh 86A (1980), 333-337. MR 592561 (82e:47002)
  • [3] -, On generalised and quadratic eigenvalue problems, Applicable Anal. 12 (1981), 27-45. MR 618519 (82m:49059)
  • [4] P. J. Browne, A multiparameter eigenvalue problem, J. Math. Anal. Appl. 38 (1972), 553-568. MR 0305118 (46:4248)
  • [5] -, Multiparameter spectral theory, Indiana Univ. Math. J. 24 (1974), 249-257. MR 0350480 (50:2972)
  • [6] -, Abstract multiparameter theory. I, J. Math. Anal. Appl. 60 (1977), 259-273. MR 0442732 (56:1111)
  • [7] -, Abstract multiparameter theory. II, J. Math. Anal. Appl. 60 (1977), 274-279. MR 0442733 (56:1112)
  • [8] N. Dunford and J. T. Schwartz, Linear operators. Part II, Interscience, New York, 1963. MR 0188745 (32:6181)
  • [9] M. Faierman, The completeness and expansion theorems associated with the multiparameter eigenvalue problem in ordinary differential equations, J. Differential Equations 5 (1969), 197-213. MR 0232991 (38:1314)
  • [10] A. Källström and B. D. Sleeman, A left definite multiparameter eigenvalue problem in ordinary differential equations, Proc. Roy. Soc. Edinburgh Sect. A 74 (1976), 145-155. MR 0404742 (53:8542)
  • [11] -, Solvability of a linear operator system, J. Math. Anal. Appl. 55 (1976), 785-793. MR 0417833 (54:5881)
  • [12] -, Multiparameter spectral theory, Ark. Mat. 15 (1977), 93-99. MR 0438163 (55:11082)
  • [13] E. Prugovečki, Quantum mechanics in Hilbert space, Academic Press, New York and London, 1971. MR 0495809 (58:14457)
  • [14] B. D. Sleeman, Multiparameter spectral theory in Hilbert space, J. Math. Anal. Appl. 65 (1978), 511-530. MR 510467 (80c:47021)
  • [15] L. Turyn, Sturm-Liouville problems with several parameters, J. Differential Equations 38 (1980), 239-259. MR 597803 (82d:34036)
  • [16] H. Volkmer, On multiparameter theory, J. Math. Anal. Appl. 86 (1982), 44-53. MR 649853 (83g:47018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A70

Retrieve articles in all journals with MSC: 47A70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0662047-3
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society