ABSTRACT. The non-Euclidean counterparts of Hardy-Littlewood's theorems on Lipschitz and mean Lipschitz functions are considered. Let $1 < p < \infty$ and $0 < \alpha \leq 1$. For f holomorphic and bounded, $|f| < 1$, in $|z| < 1$, the condition that
\[
f'(z) = O\left(\left(1 - |z|\right)^{-\alpha - 1}\right)
\]
is necessary and sufficient for f to be continuous on $|z| \leq 1$ with the boundary function $f(e^{it}) \in \sigma \Lambda_\alpha$, the hyperbolic Lipschitz class. Furthermore, the condition that the pth mean of f^* on the circle $|z| = r < 1$ is $O(1 - r)^{-1}$ is necessary and sufficient for f to be of the hyperbolic Hardy class H_p^r and for the radial limits to be of the hyperbolic mean Lipschitz class $\sigma \Lambda_\alpha^p$.

1. Introduction. We shall prove the non-Euclidean counterparts of the following Theorems A and B due to G. H. Hardy and J. E. Littlewood [2, Theorem 4, p. 627 and Theorem 3, p. 625] (see [1, Theorem 5.1, p. 74 and Theorem 5.4, p. 78]).

Let Φ be the family of complex-valued functions φ defined on the real axis such that φ is periodic with period 2π. We say that $\varphi \in \Phi$ is of Lipschitz class Λ_α $(0 < \alpha \leq 1)$ if
\[
\sup_{|t-s| \leq \tau} |\varphi(t) - \varphi(s)| = O(\tau^\alpha) \quad \text{as} \quad \tau \to +0.
\]
Let $D = \{|z| < 1\}$ and let $D^* = \{|z| \leq 1\}$ in the plane.

Theorem A. Let f be a function holomorphic in D and let $0 < \alpha \leq 1$. Then f is continuous on D^* and the function $f(e^{it})$ is of class Λ_α if and only if
\[
f'(z) = O\left(\left(1 - |z|\right)^{-\alpha - 1}\right) \quad \text{as} \quad |z| \to 1 - 0.
\]

We say that $\varphi \in \Phi$ is of mean Lipschitz class Λ_α^p $(1 \leq p < \infty, 0 < \alpha \leq 1)$ if the restriction of φ to $[0, 2\pi]$ is of $L^p[0, 2\pi]$ and if
\[
\left(1^{|\varphi(t + h) - \varphi(t)|^p} dt\right)^{1/p} = O(\tau^\alpha)
\]
as $\tau \to 0$. For $0 \leq r < 1$, $0 < p < \infty$, and for v nonnegative and subharmonic in D, we set
\[
\mu_p(r, v) = \left[\frac{1}{2\pi} \int_0^{2\pi} v(r e^{it})^p dt\right]^{1/p}.
\]

Received by the editors February 11, 1981.

1980 Mathematics Subject Classification. Primary 30D55.

Key words and phrases. Lipschitz functions, mean Lipschitz functions, Hardy class, non-Euclidean hyperbolic distance.
this is an increasing function of r. The Hardy class $H^p (0 < p < \infty)$ consists of f holomorphic in D such that $\mu_p (r, |f|) = O(1)$ as $r \to 1$, or equivalently, the subharmonic function $|f|^p$ has a harmonic majorant in D. By the boundary value of a complex-valued function g in D at the point e^{it} of the unit circle we mean the radial limit $g(e^{it}) = \lim_{r \to 1} g(re^{it})$. Each function $f \in H^p (0 < p < \infty)$ admits the boundary value $f(e^{it})$ at a.e. point e^{it}, and $f(e^{it}) \in L^p [0, 2\pi]$.

Theorem B. Let f be a function holomorphic in D, and let $1 \leq p < \infty, 0 < \alpha \leq 1$. Then $f \in H^p$ and the function $f(e^{it})$ is of class Λ^p_α if and only if

\[(1.2) \quad \mu_p (r, |f'|) = O\left(\left(1 - r\right)^{\alpha - 1}\right) \quad \text{as} \quad r \to 1.\]

In the case $\alpha = 1$, (1.2) says that $f' \in H^p$.

The non-Euclidean hyperbolic distance between z and w in D is defined by

\[\sigma(z, w) = \frac{1}{2} \log \frac{|1 - \overline{z}w| + |z - w|}{|1 - \overline{z}w| - |z - w|}.\]

We set $\sigma(z) \equiv \sigma(z, 0)$, the hyperbolic counterpart of $|z|, z \in D$. We say that $\varphi \in \Phi$ is of class $\sigma\Lambda_\alpha (0 < \alpha \leq 1)$ if φ is bounded, $|\varphi| < 1$, and if

\[\sup_{|r| < 1} \sigma(\varphi(t), \varphi(s)) = O(\tau^\alpha) \quad \text{as} \quad \tau \to +0.\]

Let B be the family of functions f holomorphic and bounded, $|f| < 1$, in D. Then, apparently, $f(e^{it})$ exists a.e. For $f \in B$, the Schwarz-Pick lemma reads

\[f^*(z) \equiv |f'(z)| / \left(1 - |f(z)|^2\right) \leq \left(1 - |z|^2\right)^{-1}, \quad z \in D.\]

We note that $\log f^*$ is subharmonic in D, so that $f^{*p} = \exp(p \log f^*) (0 < p < \infty)$ is subharmonic in D. The hyperbolic analogue of Theorem A is

Theorem 1. Let $f \in B$, and let $0 < \alpha \leq 1$. Then f is continuous on $D^\#$ and the function $f(e^{it})$ is of class $\sigma\Lambda^p_\alpha$ if and only if

\[(1.3) \quad f^*(z) = O\left((1 - |z|)^{\alpha - 1}\right) \quad \text{as} \quad |z| \to 1 - 0.\]

We say that $\varphi \in \Phi$ is of class $\sigma\Lambda^p_\alpha$ ($1 \leq p < \infty, 0 < \alpha \leq 1$) if $|\varphi(t)| < 1$ a.e., if the restriction of $\sigma(\varphi(t)) \equiv \sigma(\varphi(t))$ to $[0, 2\pi]$ is of $L^p[0, 2\pi]$, and if

\[\sup_{0 < h < \tau} \left[\int_0^{2\pi} \sigma(\varphi(t + h), \varphi(t))^p dt\right]^{1/p} = O(\tau^\alpha)\]

as $\tau \to 0$. For $f \in B$ set $\sigma(f)(z) \equiv \sigma(f(z))$, the hyperbolic counterpart of $|f(z)|$ ($z \in D$). Then $\log \sigma(f)$ is subharmonic in D because $X(x) \equiv \log \sigma(e^x)$ is a convex and increasing function of $x \in (-\infty, 0)$, with $-\infty = X(-\infty) \equiv \lim_{x \to -\infty} X(x)$, and $\log \sigma(f) = X(\log |f|)$. For each $a \in D$, the identity $\sigma(g) = \sigma(f, a)$ holds, where $g = (f - a)/(1 - \overline{a}f) \in B$ for $f \in B$. Therefore log $\sigma(f, a)$ and $\sigma(f, a)^p = \exp(p \log \sigma(f, a))[0 < p < \infty]$ are subharmonic in D. Let H^p_a be the set of all $f \in B$ such that $\mu_p (r, \sigma(f)) = O(1)$ as $r \to 1$, or equivalently, the subharmonic function $\sigma(f)^p$ admits a harmonic majorant in D. The hyperbolic Hardy class $H^p_a (0 < p < \infty)$ is the counterpart of H^p. We are now ready to propose a hyperbolic analogue of Theorem B.
THEOREM 2. Let \(f \in B \), and let \(1 \leq p < \infty \), \(0 < \alpha \leq 1 \). Then \(f \in H^p_\alpha \) and the function \(f(e^{it}) \) is of class \(\sigma \Lambda^p_\alpha \) if and only if
\[
\mu_p(r, f^*) = O\left((1 - r)^{\alpha - 1} \right) \quad \text{as } r \to 1.
\]

In the case \(\alpha = 1 \) in (1.4), the subharmonic function \(f^p \) admits a harmonic majorant.

The proof of Theorem 1 is not difficult and depends on Theorem A; we need comparisons of the non-Euclidean distance and the Euclidean distance. The proof of the “if” part of Theorem 2 is, in a sense, routine. Not easy is the proof of the “only if” part of Theorem 2. There is no relation between \(\sigma(f) \) and \(f^* \) like that between \(|f| \) and \(|f'| \), namely, one cannot assert that \(\sigma(f') = f^* \) even if \(|f'| < 1 \).

2. Proof of Theorem 1. Consider the two inequalities
\[
\begin{align*}
|z - w| &\leq \sigma(z, w), &z, w \in D, \\
\sigma(z, w) &\leq 2 |z - w|/|1 - \bar{z}w|
\end{align*}
\]
for \(z, w \in D \) with \(|z - w|/|1 - \bar{z}w| \leq 1/\sqrt{2} \). The inclusion formula \(\sigma \Lambda^\alpha \subseteq \Lambda^\alpha \) follows from (2.1). If \(\varphi \in \Lambda^\alpha \) and if \(|\varphi(t)| < 1 \) for all \(t \in (-\infty, \infty) \), then \(\varphi \in \sigma \Lambda^\alpha \).

To observe this we set \(\max |\varphi(t)| = M < 1 \) because \(\varphi \) is continuous. Then there exist two positive constants \(K \) and \(\delta \) such that
\[
K\delta^\alpha \leq (1 - M^2)/\sqrt{2} \quad \text{and} \quad |\varphi(t) - \varphi(s)| \leq K\tau^\alpha
\]
for all \(\tau, 0 < \tau < \delta \), and for all \(t, s \) with \(|t - s| \leq \tau \). Since
\[
|\varphi(t) - \varphi(s)| \leq (1 - M^2)/\sqrt{2},
\]

it follows that
\[
|\varphi(t) - \varphi(s)|/|1 - \overline{\varphi(t)} \varphi(s)| \leq 1/\sqrt{2},
\]
whence, by (2.2),
\[
\sigma(\varphi(t), \varphi(s)) \leq \left[2/(1 - M^2) \right] |\varphi(t) - \varphi(s)| \leq K_1 \tau^\alpha
\]
for all \(t, s \) with \(|t - s| \leq \tau < \delta \) \((K_1 = 2K/(1 - M^2))\). Therefore \(\varphi \in \sigma \Lambda^\alpha \).

To prove the “only if” part of Theorem 1, we notice first that if \(f(e^{it}) \in \Lambda^\alpha \). Since \(|f(e^{it})| < 1 \) for all \(t \), it follows from the maximum modulus principle that \(A = \max\{|f(z)|; z \in D^\#\} < 1 \). Since \(f^* \leq |f'|/(1 - A^2) \), the conclusion (1.3) follows from (1.1).

To prove the “if” part of Theorem 1 we first note that (1.1) holds by \(|f'| \leq f^* \). By Theorem A, \(f \) is continuous on \(D^\# \) and \(f(e^{it}) \in \Lambda^\alpha \). Now, if \(|f(e^{it})| = 1 \) for a certain \(t \), then
\[
\infty = \lim_{r \to 1} \sigma(f(re^{it}), f(0)) \leq \lim_{r \to 1} \int_0^r f^*(re^{it}) \, dp < \infty
\]
by (1.3); this is a contradiction. Therefore \(\max |f(e^{it})| < 1 \), which, together with \(f(e^{it}) \in \Lambda^\alpha \), shows that \(f(e^{it}) \in \sigma \Lambda^\alpha \).
3. Proof of Theorem 2. For the proof of the “if” part we assume that
\[\mu_p(r, f^*) \leq K(1 - r)^{a-1} \quad \text{for } 0 < r < 1, \]
where \(K > 0 \) is a constant. To prove that \(f \in H_p^0 \) we apply the continuous form of the Minkowski inequality (see [3, (7), p. 20]) to
\[\sigma(f(re^{i\theta}), f(0)) \leq \int_0^r f^*(\rho e^{i\theta}) \, d\rho \]
for \(0 \leq t \leq 2\pi \, (0 < r < 1) \). Then
\[\mu_p(r, \sigma(f, f(0))) \leq \int_0^r \mu_p(\rho, f^*) \, d\rho \leq K/\alpha < \infty \]
by (3.1). Since \(\sigma(f) \leq \sigma(f, f(0)) + \sigma(f(0), 0) \), the Minkowski inequality in the usual form yields that \(\mu_p(r, \sigma(f)) = O(1) \), or \(f \in H_p^0 \). Since \(\mu_p(r, \sigma(f)) \) is bounded for \(0 < r < 1 \), the Fatou lemma shows that \(|f(e^{i\theta})| < 1 \) a.e. and \(\sigma(f(e^{i\theta})) \in L^p[0, 2\pi] \).

Now, let \(0 < h < \alpha < 1/2 \), and set \(s = t + h \) for \(t \in (-\infty, \infty) \). Let \((h < 1) - h < r < 1 \), and set \(\rho = r - h \). Then
\[\sigma(f(re^{i\theta}), f(re^{i\theta})) \leq \int_0^r f^*(\lambda e^{i\theta}) \, d\lambda + \int_0^r f^*(\lambda e^{is}) \, d\lambda \]
\[+ \int_0^r f^*(\rho e^{is}) \, dx. \]
The third term in the right-hand side is not greater than \(Kh(1 - \rho)^{a-1} \) by (3.1). Applying the Minkowski inequality first in the usual and then in the continuous form we obtain
\[\left[\frac{1}{2\pi} \int_0^{2\pi} \sigma(f(re^{i\theta+h}), f(re^{i\theta}))^p \, dt \right]^{1/p} \leq 2 \int_0^r \mu_p(\lambda, \lambda^*) \, d\lambda + Kh(1 - \rho)^{a-1}. \]
The first term in the right-hand side is not greater than \((2K/\alpha)h^a \) by (3.1), together with \((1 - \rho)^a \leq (1 - r)^a + h^a \), while the second term is not greater than \(K(1 - \rho)^a \leq 2^aKh^a \). Therefore the left-hand side of (3.2) is not greater than \(K_1\tau^a \), where \(K_1 > 0 \) is a constant. Letting \(r \to 1 \) and considering the Fatou lemma one finds that
\[\left[\frac{1}{2\pi} \int_0^{2\pi} \sigma(f(e^{i\theta+h}), f(e^{i\theta}))^p \, dt \right]^{1/p} \leq K_1\tau^a, \]
which completes the proof of \(f(e^{i\theta}) \in \Lambda_\alpha^p \).

For the proof of the “only if” part in the case \(0 < \alpha < 1 \) we remember [1, p. 74] that
\[\int_{-\pi}^{\pi} \frac{|t|^a \, dt}{1 - 2r \cos t + r^2} = O((1 - r)^{a-1}). \]
Fix \(z = re^\theta \neq 0 \) in \(D \) for a moment, and set
\[g(w) = \frac{(f(w) - f(z))}{(1 - \overline{f(z)}f(w))}, \quad w \in D. \]
Since \(g \in B \), the Cauchy integral formula of \(g - g(e^{i\theta}) \) yields
\[
g'(z) = \frac{1}{2\pi i} \int_{|z|=1} \frac{g(\zeta) - g(e^{i\theta})}{(\zeta - z)^2} \, d\zeta,
\]
whence
\[
f^*(z) = |g'(z)| \leq \frac{1}{2\pi} \int_{-\pi}^\pi \frac{|g(e^{i(t+\theta)}) - g(e^{i\theta})|}{1 - 2r \cos t + r^2} \, dt.
\]
Since
\[
|g(e^{i(t+\theta)}) - g(e^{i\theta})| \leq \sigma(g(e^{i(t+\theta)}), g(e^{i\theta}))
\]
\[
= \sigma(f(e^{i(t+\theta)}), f(e^{i\theta})),
\]
it follows from (3.5) that
\[
f^*(re^{i\theta}) \leq \frac{1}{2\pi} \int_{-\pi}^\pi \frac{\sigma(f(e^{i(t+\theta)}), f(e^{i\theta}))}{1 - 2r \cos t + r^2} \, dt.
\]
Now, it is an easy exercise to observe that
\[
\int_0^{2\pi} \sigma(f(e^{i(t+\theta)}), f(e^{i\theta}))^p \, d\theta \leq K_2 |t|^p\alpha
\]
for all \(t, |t| < \pi \), where \(K_2 > 0 \) is a constant. The Minkowski inequality, together with (3.3), asserts from (3.6) that, for \(0 < r < 1 \),
\[
\mu_p(r, f^*) = O((1 - r)^{\alpha-1}).
\]
To prove that \(\mu_p(r, f^*) = O(1) \) if \(f \in H^p \) and if \(f(e^{it}) \in \sigma\Lambda_p \) we need some properties of \(F \in H^p \) with \(F(e^{it}) \in \sigma\Lambda_p \). Since \(\sigma\Lambda_{p_1} \subset \sigma\Lambda_1 \subset \Lambda_1 \), \(F(e^{it}) \) is equal a.e. to a function of bounded variation on \([0, 2\pi]\) (see [1, Lemma 1, p. 72]). Since \(F \in B \subset H^1 \), \(F(e^{it}) \) can be considered as an absolutely continuous function on \([0, 2\pi]\) by [1, Theorem 3.10, p. 42]. Furthermore, by [1, Theorem 3.11, p. 42],
\[
F'(e^{it}) = \frac{d}{dt} F(e^{it}) = ie^{it} \lim_{r \to 1} F'(re^{it}) = e^{it} F'(e^{it})
\]
exists a.e. on \([0, 2\pi]\); this derivative \(F'(e^{it}) \) is of class \(L^1[0, 2\pi] \). The principal point we need is the fact that
\[
F'(e^{it}) \equiv F'(e^{it}) \bigg/ (1 - |F(e^{it})|^2)
\]
for \(t \in [0, 2\pi] \) is of class \(L^p[0, 2\pi] \). In effect, since \(F(e^{it}) \in \sigma\Lambda_p \), there exist constants \(K_3 > 0 \) and \(\delta > 0 \) such that
\[
\int_0^{2\pi} \left[\frac{\sigma(F(e^{i(t+h)}), F(e^{it}))}{|h|} \right]^p \, dt \leq K_3
\]
for all \(h \) with \(0 < |h| < \delta \). Letting \(h \to 0 \) and considering the Fatou lemma, one obtains that
\[
\int_0^{2\pi} F'(e^{it})^p \, dt \leq K_3.
\]
Now, consider g of (3.4). Since $f \in H_0^p$ and $f(e^{it}) \in \sigma \Lambda^1$, it follows that $g \in H_0^p$ and $g(e^{it}) \in \sigma \Lambda^p$. Therefore g is absolutely continuous and $g'(e^{it})$ is of $L^1[0, 2\pi]$. Differentiating the Poisson integral

$$g(w) = \frac{1}{2\pi} \int_0^{2\pi} P(R, s - t)g(e^{it}) \, dt$$

with respect to s, where $w = Re^{is} \neq 0$, and $P(R, s - t) = (1 - R^2)/|e^{it} - Re^{is}|^2$, one observes that

$$iwg'(w) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial}{\partial s} P(R, s - t)g(e^{it}) \, dt$$

(3.7)

$$= -\frac{1}{2\pi} \int_0^{2\pi} \left[\frac{\partial}{\partial t} P(R, s - t) \right] g(e^{it}) \, dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} P(R, s - t)g'(e^{it}) \, dt.$$

On the other hand,

$$|g'(e^{it})| = \frac{|f'(e^{it})|}{|1 - f(z)f(e^{it})|^2} \leq f'(e^{it}).$$

It then follows from (3.7), together with $f'(e^{it}) \in L^p[0, 2\pi]$ that

$$|w|^p |g'(w)|^p \leq \frac{1}{2\pi} \int_0^{2\pi} P(R, s - t)f'(e^{it})^p \, dt.$$

On setting $w = z = re^{i\theta}$, one obtains that

$$|z|^pf^*(z)^p \leq \frac{1}{2\pi} \int_0^{2\pi} P(r, \theta - t)f^*(e^{it})^p \, dt,$$

so that $\mu_p(r, f^*) = O(1)$.

REFERENCES

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, FUKAZAWA, SETAGAYA, TOKYO 158, JAPAN