Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On actions of adjoint type on complex Stiefel manifolds


Author: McKenzie Y. Wang
Journal: Trans. Amer. Math. Soc. 272 (1982), 611-628
MSC: Primary 57S15; Secondary 57S25
DOI: https://doi.org/10.1090/S0002-9947-1982-0662056-4
MathSciNet review: 662056
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G(m)$ denote $ {\rm {SU}}(m)$ or $ {\rm {Sp}}(m)$. It is shown that when $ m \geq 5\,G(m)$ cannot act smoothly on $ W_{n,2}$, the complex Stiefel manifold of orthonormal $ 2$-frames in $ \mathbf C^n$, for $ n$ odd, with connected principal isotropy type equal to the class of maximal tori in $ G(m)$. This demonstrates an important difference between $ W_{n,2}$, $ n$ odd, and $ S^{2n-3}\times S^{2n-1}$ in the behavior of differentiable transformation groups. Exactly the same holds for $ {\rm {SO}}(m)$ or Spin$ (m)$ if it is further assumed that a maximal $ 2$-torus of $ {\rm {SO}}(m)$ has fixed points.$ ^{2}$


References [Enhancements On Off] (What's this?)

  • [1] A. Borel et al., Seminar on transformation groups, Ann. of Math. Studies, No. 46, Princeton Univ. Press, Princeton, N. J., 1961. MR 0116341 (22:7129)
  • [2] A. Borel and J. de Siebenthal, Les sous-groupes fermes de rang maximum des groupes des Lie clos, Comment. Math. Helv. 23 (1949), 200-221. MR 0032659 (11:326d)
  • [3] G. Bredon, Introduction to transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [4] -, Homotopical properties of fixed point sets of circle group actions. I, Amer. J. Math. 91 (1969), 874-888. MR 0259905 (41:4534)
  • [5] T. Chang and T. Skjelbred, The topological Schur lemma and related results, Ann. of Math. 100 (1974), 307-321. MR 0375357 (51:11552)
  • [6] W. C. Hsiang and W. Y. Hsiang, Differentiable actions of compact connected classical groups. II, Ann. of Math. 92 (1970), 189-223. MR 0265511 (42:420)
  • [7] W. Y. Hsiang, Structural theorems for topological actions of $ \mathbf Z/2$-tori on real, complex, and quaternionic projective spaces, Comment. Math. Helv. 49 (1974), 479-491. MR 0375362 (51:11557)
  • [8] -, On characteristic classes of compact homogeneous spaces and their application in compact transformation groups. I, Preprint, University of California, Berkeley, 1979. MR 607008 (82j:57022)
  • [9] -, Cohomology theory of topological transformation groups, Ergebnisse der Math. und ihrer Grenzgebiete, Band 85, Springer-Verlag, New York, 1975. MR 0423384 (54:11363)
  • [10] J. C. Su, Periodic transformations on the product of two spheres, Trans. Amer. Math. Soc. 112 (1964), 369-380. MR 0163309 (29:612)
  • [11] M. Wang, Doctoral Dissertation, Stanford University, 1980.
  • [12] -, On actions of regular type on complex Stiefel manifolds, Trans. Amer. Math. Soc. 272 (1982), 589-610. MR 662055 (83k:57031a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S15, 57S25

Retrieve articles in all journals with MSC: 57S15, 57S25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0662056-4
Keywords: Stiefel manifolds, compact differentiable transformation groups, Steenrod operations, actions of adjoint type
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society