Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On group $ C\sp{\ast} $-algebras of bounded representation dimension


Author: Iain Raeburn
Journal: Trans. Amer. Math. Soc. 272 (1982), 629-644
MSC: Primary 22D25; Secondary 46L05
DOI: https://doi.org/10.1090/S0002-9947-1982-0662057-6
MathSciNet review: 662057
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the structure of group $ C^{\ast}$-algebras whose irreducible representations have bounded dimension. We give some general results, including a description of the topology on the spectrum, and then calculate explicitly the $ C^{\ast}$-algebras of two specific groups, one of them a nonsymmorphic space group.


References [Enhancements On Off] (What's this?)

  • [1] L. Baggett, A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc. 132 (1968), 175-215. MR 0409720 (53:13472)
  • [2] L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Funct. Anal. 14 (1973), 299-324. MR 0364537 (51:791)
  • [3] L. Baggett and T. Sund, The Hausdorff dual problem for connected groups, J. Funct. Anal. 43 (1981), 60-68. MR 639797 (83a:22006)
  • [4] C. J. Bradley and A. P. Cracknell, The mathematical theory of symmetry in solids: Representation theory for point groups and space groups, Oxford Univ. Press, London, 1972.
  • [5] A. P. Cracknell, Tables of the irreducible representations of the 17 two-dimensional space groups and their relevance to quantum mechanical eigenstates for surfaces and thin films, Thin Solid Films 21 (1974), 107-127.
  • [6] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. MR 0144979 (26:2519)
  • [7] J. Dixmier, $ C^{\ast}$-algebras, North-Holland, Amsterdam, 1977. MR 0458185 (56:16388)
  • [8] M. J. Dupré, The structure and classification of $ C^{\ast}$-algebra bundles, Mem. Amer. Math. Soc. No. 222 (1979). MR 539224 (83c:46069)
  • [9] J. M. G. Fell, The dual spaces of $ C^{\ast}$-algebras, Trans. Amer. Math. Soc. 94 (1960), 365-403. MR 0146681 (26:4201)
  • [10] -, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280. MR 0164248 (29:1547)
  • [11] -, Weak containment and induced representation of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424-447. MR 0159898 (28:3114)
  • [12] S. Grosser and M. Moskowitz, Harmonic analysis on central topological groups, Trans. Amer. Math. Soc. 156 (1971), 419-454. MR 0276418 (43:2165)
  • [13] A. A. Kirillov, Elements of the theory of representations, Springer-Verlag, Berlin and New York, 1976. MR 0412321 (54:447)
  • [14] J. R. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85-108. MR 0318390 (47:6937)
  • [15] G. W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311. MR 0098328 (20:4789)
  • [16] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401-410. MR 0302817 (46:1960)
  • [17] B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3) 1 (1951), 178-187. MR 0043779 (13:316c)
  • [18] I. Schochetman, The dual topology of certain group extensions, Adv. in Math. 35 (1980), 113-128. MR 560131 (81e:22005)
  • [19] T. Sund, Duality theory for locally compact groups with precompact conjugacy classes. II: The dual space, Trans. Amer. Math. Soc. 224 (1976), 314-321. MR 0439982 (55:12863)
  • [20] E. Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I, Invent. Math. 6 (1968), 190-196. MR 0248288 (40:1540)
  • [21] J. Tomiyama and M. Takesaki, Applications of fibre bundles to the certain class of $ C^{\ast}$-algebras, Tôhoku Math. J. 13 (1961), 498-522. MR 0139025 (25:2465)
  • [22] N. B. Vasilev, $ C^{\ast}$-algebras with finite-dimensional irreducible representations, Russian Math. Surveys 21 (1966), 137-155. MR 0201994 (34:1871)
  • [23] R. B. Warfield, Nilpotent groups, Lecture Notes in Math., vol. 513, Springer-Verlag, Berlin and New York, 1976. MR 0409661 (53:13413)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D25, 46L05

Retrieve articles in all journals with MSC: 22D25, 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0662057-6
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society