Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalization of continuous posets


Author: Dan Novak
Journal: Trans. Amer. Math. Soc. 272 (1982), 645-667
MSC: Primary 06A15; Secondary 06A10
DOI: https://doi.org/10.1090/S0002-9947-1982-0662058-8
MathSciNet review: 662058
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we develop a general theory of continuity in partially ordered sets. Among the interesting special cases of this theory is the theory of continuous lattices developed by D. Scott, J. Lawson and others.


References [Enhancements On Off] (What's this?)

  • [1] H.-J. Bandelt and M. Erné, Representations and embeddings of $ m$-distributive lattices (to appear). MR 763234 (86m:06017)
  • [2] G. Birkhoff, Lattice theory, 1st ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1948. MR 0029876 (10:673a)
  • [3] -, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967.
  • [4] G. Bruns, Distributivität und subdirekte zerlegbarkeit vollständiger verbände, Arch. Math. 12 (1961), 61-66. MR 0124247 (23:A1561)
  • [5] A. Day, Filter monads, continuous lattices and closure systems, Canad. J. Math. 27 (1975), 50-59. MR 0367013 (51:3258)
  • [6] M. Erné, Homomorphisms of $ m$-generated and $ m$-distributive posets (to appear).
  • [7] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin, Heidelberg and New York, 1980. MR 614752 (82h:06005)
  • [8] K. H. Hofmann and A. R. Stralka, The algebraic theory of compact Lawson semilattices, Dissertationes Math. 137 (1976), 1-58.
  • [9] S. L. Jansen, Subdirect representation of partially ordered sets, J. London Math. Soc. (2) 17 (1978), 195-202. MR 0485597 (58:5423)
  • [10] J. D. Lawson, The duality of continuous posets, (preprint). MR 559976 (81i:06003)
  • [11] G. Markowsky, Chain-complete posets and directed sets with applications, Algebra Universalis 6 (1976), 53-68. MR 0398913 (53:2764)
  • [12] J. Martinez, Unique factorization in parially ordered sets, Proc. Amer. Math. Soc. 33 (1972), 213-220. MR 0292723 (45:1806)
  • [13] G. N. Raney, Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677-680. MR 0052392 (14:612f)
  • [14] -, A subdirect-union representation for completely distributive lattices, Proc. Amer. Math. Soc. 4 (1953), 518-522. MR 0058568 (15:389e)
  • [15] -, Tight Galois connections and complete distributivity, Trans. Amer. Math. Soc. 97 (1960), 418-426. MR 0120171 (22:10928)
  • [16] J. Schmidt, Universal and internal properties of some extensions of partially ordered sets, J. Reine Angew. Math. 253 (1972), 28-42. MR 0300945 (46:105)
  • [17] -, Universal and internal properties of some completions of $ k$-join semilattices and $ k$-join distributive partially order sets, J. Reine Angew. Math. 255 (1972), 8-22. MR 0297654 (45:6708)
  • [18] D. Scott, Continuous lattices, Toposes, Algebraic Geometry and Logic, Lecture Notes in Math., vol. 274, Springer-Verlag, New York, 1972, pp. 97-136. MR 0404073 (53:7879)
  • [19] J. B. Wright, E. G. Wagner and J. W. Thatcher, A uniform approach to inductive posets and inductive closure, Lecture Notes in Computer Science (Mathematical Foundations of Computer Science), vol. 53, Springer-Verlag, Berlin and New York, 1977, pp. 192-212. MR 0491374 (58:10632)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A15, 06A10

Retrieve articles in all journals with MSC: 06A15, 06A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0662058-8
Keywords: Continuous extension, distributivity, well below relation, closure operator, Galois connection, strong continuity
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society