Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rational LS category and its applications


Authors: Yves Félix and Stephen Halperin
Journal: Trans. Amer. Math. Soc. 273 (1982), 1-37
MSC: Primary 55P62; Secondary 55M30, 55P50
DOI: https://doi.org/10.1090/S0002-9947-1982-0664027-0
MathSciNet review: 664027
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a $ 1$-connected CW-complex of finite type and put $ {\text{ca}}{{\text{t}}_0}(S) = $ Lusternik-Schnirelmann category of the localization $ {S_{\mathbf{Q}}}$. This invariant is characterized in terms of the minimal model of $ S$. It is shown that if $ \phi :S \to T$ is injective on $ {\pi _ \ast } \otimes {\mathbf{Q}}$ then $ {\text{ca}}{{\text{t}}_0}(S) \leqslant {\text{ca}}{{\text{t}}_0}(T)$, and this result is strengthened when $ \phi $ is the fibre inclusion of a fibration. It is also shown that if $ {H^ \ast }(S;{\mathbf{Q}}) < \infty $ then either $ {\pi _ \ast }(S) \otimes {\mathbf{Q}} < \infty $ or the groups $ {\pi _k}(S) \otimes {\mathbf{Q}}$ grow exponentially with $ k$.


References [Enhancements On Off] (What's this?)

  • [1] D. Anick, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1980.
  • [2] H. J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), 219-242. MR 0431172 (55:4174)
  • [3] I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math. 5 ( 1961 ), 99-130. MR 0126277 (23:A3573)
  • [4] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, The real homotopy of Kähler manifolds, Invent. Math. 29 (1975), 245-274. MR 0382702 (52:3584)
  • [5] Y. Felix, Modèles bifiltrés: une plaque tournante en homotopie rationelle, Canad. J. Math. (to appear). MR 645238 (83i:55013)
  • [6] J. Friedlander and S. Halperin, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math. 53 (1979), 117-133. MR 560410 (81f:55006b)
  • [7] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417-427. MR 0229240 (37:4814)
  • [8] W. J. Gilbert, Some examples for weak category and conilpotency, Illinois J. Math. 12 (1968), 421-432. MR 0231375 (37:6930)
  • [9] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. MR 0275424 (43:1181)
  • [10] K. Grove, S. Halperin and M. Vigué-Poirrier, The rational homotopy theory of certain path spaces with applications to geodesics, Acta Math. 140 (1978), 277-303. MR 496895 (80g:58024)
  • [11] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173-199. MR 0461508 (57:1493)
  • [12] -, Lectures on minimal models, mimeographed notes, Université de Lille I, 1977.
  • [13] -, Rational fibrations, minimal models and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199-223. MR 0515558 (58:24264)
  • [14] S. Halperin and J. D. Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), 233-279. MR 539532 (80j:55016)
  • [15] I. M. James, On category in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348. MR 516214 (80i:55001)
  • [16] J.-M. Lemaire, Autopsie d'un meurtre dans l'homologie d'une algèbre de chaines, Ann. Sci. École Norm. Sup. 11 (1978), 93-100. MR 0500930 (58:18423)
  • [17] J.-M. Lemaire and F. Sigrist, Sur les invariants d'homotopie rationelle liés à la L. S. catégorie, Comment. Math. Helv. 56 (1981), 103-122. MR 615618 (82g:55009)
  • [18] L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationneles, Hermann, Paris, 1934.
  • [19] W. S. Massey, Some problems in algebraic topology and the theory of fiber bundles, Ann. of Math. (2) 62 (1955), 327-359. MR 0074828 (17:653g)
  • [20] J. Milnor, Constructiion of universal bundles. I, Ann. of Math. (2) 63 (1956), 272-284. MR 0077122 (17:994b)
  • [21] -, Construction of universal bundles. II, Ann of Math. (2) 63 (1956), 430-436. MR 0077932 (17:1120a)
  • [22] J. C. Moore, Algèbre homologique et homologie des espaces classifiants, Séminaire Cartan 1959/60, Exposé 7, Paris.
  • [23] A. Oukidi, Sur l'homologie d'une algèbre différentielle (de Lie), Thèse ($ 3^{e}$ cycle), Université de Nice, 1978.
  • [24] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 0258031 (41:2678)
  • [25] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1978), 269-331. MR 0646078 (58:31119)
  • [26] G. H. Toomer, Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z. 138 (1974), 123-143. MR 0356037 (50:8509)
  • [27] -, Topological localization, category and cocategory, Canad. J. Math. 27 (1975), 319-322. MR 0370571 (51:6798)
  • [28] G. W. Whitehead, The homology suspension, Colloque de Topologie Algébrique, Louvain (1956), Thone, Liège; Masson, Paris, 1957, pp. 89-95. MR 0094794 (20:1306)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P62, 55M30, 55P50

Retrieve articles in all journals with MSC: 55P62, 55M30, 55P50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0664027-0
Keywords: Lusternik-Schnirelmann category, minimal model, rational homotopy, rank of a space
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society