When is the natural map a cofibration?

Author:
L. Gaunce Lewis

Journal:
Trans. Amer. Math. Soc. **273** (1982), 147-155

MSC:
Primary 55P05

DOI:
https://doi.org/10.1090/S0002-9947-1982-0664034-8

MathSciNet review:
664034

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a map is a cofibration if its adjoint is a cofibration and and are locally equiconnected (LEC) based spaces with compact and nontrivial. Thus, the suspension map is a cofibration if is LEC. Also included is a new, simpler proof that C.W. complexes are LEC. Equivariant generalizations of these results are described.

**[1]**R. R. Bruner, L. G. Lewis, Jr., J. P. May, J. E. McClure and M. Steinberger,*ring spectra and equivariant stable homotopy theory*, Lecture Notes in Math., Springer-Verlag, Berlin and New York (in preparation).**[2]**J. Dugundi,*Locally equiconnected spaces and absolute neighborhood retracts*, Fund. Math.**57**(1965), 187-193. MR**0184202 (32:1675)****[3]**E. Dyer and S. Eilenberg,*An adjunction theorem for locally equiconnected spaces*, Pacific J. Math.**41**(1972), 669-685. MR**0319143 (47:7689)****[4]**L. G. Lewis, Jr.,*The stable category and generalized Thom spectra*, Thesis, University of Chicago, 1978.**[5]**J. Lillig,*A union theorem for cofibrations*, Arch. Math.**24**(1973), 410-415. MR**0334193 (48:12512)****[6]**J. P. May,*Classifying spaces and fibrations*, Mem. Amer. Math. Soc. No. 155 (1975). MR**0370579 (51:6806)****[7]**-,*The homotopical foundations of algebraic topology*, Monograph London Math. Soc., Academic Press, New York (in preparation).**[8]**M. C. McCord,*Classifying spaces and infinite symmetric products*, Trans. Amer. Math. Soc.**146**(1969), 273-298. MR**0251719 (40:4946)****[9]**A. Strøm,*Note on cofibrations*. II, Math. Scand.**22**(1968), 130-142. MR**0243525 (39:4846)****[10]**-,*The homotopy category is a homotopy category*, Arch. Math.**23**(1972), 435-441. MR**0321082 (47:9615)****[11]**R. M. Vogt,*Convenient categories of topological spaces for homotopy theory*, Arch. Math.**22**(1971), 545-555. MR**0300277 (45:9323)****[12]**S. Waner,*Equivariant homotopy theory and Milnor's theorem*, Trans. Amer. Math. Soc.**258**(1980), 351-368. MR**558178 (82m:55016a)****[13]**O. Wyler,*Convenient categories for topology*, Gen. Topology Appl.**3**(1973), 225-242. MR**0324622 (48:2972)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55P05

Retrieve articles in all journals with MSC: 55P05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0664034-8

Keywords:
Cofibration,
equivariant cofibration,
suspension map,
locally equiconnected space,
LEC space,
Lillig Union Theorem,
Dyer-Eilenberg Adjunction Theorem,
geometric realization

Article copyright:
© Copyright 1982
American Mathematical Society