Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Global solvability on compact Heisenberg manifolds

Author: Leonard F. Richardson
Journal: Trans. Amer. Math. Soc. 273 (1982), 309-317
MSC: Primary 22E25; Secondary 35F99, 58G05
MathSciNet review: 664044
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply the methods of primary and irreducible Fourier series on compact nilmanifolds to determine the ranges of all first order invariant operators on the compact Heisenberg manifolds. We show that the sums of primary solutions behave better on these manifolds than on any multidimensional torus.

References [Enhancements On Off] (What's this?)

  • [1] L. Auslander and J. Brezin, Uniform distribution in solvmanifolds, Advances in Math. 7 (1971), 111-144. MR 0301137 (46:295)
  • [2] L. Auslander, L. Green and F. Hahn, Flows on homogeneous spaces, Ann. of Math. Studies, no. 53, Princeton Univ. Press, Princeton, N. J., 1963.
  • [3] L. Auslander and R. Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Math., vol. 436, Springer-Verlag, Berlin and New York, 1975. MR 0414785 (54:2877)
  • [4] L. Corwin and F. Greenleaf, Integral formulas with distribution kernels for irreducible projections in $ {L^2}$ of a nilmanifold, J. Functional Analysis 23 (1976), 255-284. MR 0460535 (57:528)
  • [5] L. Corwin, F. Greenleaf, and R. Penney, A canonical formula for the distribution kernels of primary projections in $ {L^2}$ of a nilmanifold, Comm. Pure Appl. Math. 30 (1977), 355-372. MR 0430157 (55:3164)
  • [6] J. Dadok and M. Taylor, Local solvability of constant coefficient partial differential equations as a small divisor problem, preprint. MR 603601 (82h:35014)
  • [7] H. Dym and H. McKean, Fourier series and integrals, Academic Press, New York, 1972. MR 0442564 (56:945)
  • [8] G. Hardy and E. Wright, An introduction to the theory of numbers, 3rd ed., Oxford Univ. Press, New York and London, 1954. MR 0067125 (16:673c)
  • [9] B. Helffer, Hypoellipticite pour des operateurs differentiels sur des groupes de Lie nilpotents, preprint. MR 660651 (83h:22015)
  • [10] I. Niven, Irrational numbers, Carus Monograph No. 11, Math. Assoc. Amer., New York, 1956. MR 0080123 (18:195c)
  • [11] L. Richardson, Decomposition of the $ {L^2}$-space of a general compact nilmanifold, Amer. J. Math. 93 (1971), 173-190. MR 0284546 (44:1771)
  • [12] -, A class of idempotent measures on compact nilmanifolds, Acta Math. 135 ( 1975), 129-154. MR 0486324 (58:6080)
  • [13] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, Berlin and New York, 1972. MR 0498999 (58:16979)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E25, 35F99, 58G05

Retrieve articles in all journals with MSC: 22E25, 35F99, 58G05

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society