On the double suspension homomorphism at odd primes

Authors:
J. R. Harper and H. R. Miller

Journal:
Trans. Amer. Math. Soc. **273** (1982), 319-331

MSC:
Primary 55T15; Secondary 55P40, 55Q25, 55Q45, 55U99

DOI:
https://doi.org/10.1090/S0002-9947-1982-0664045-2

MathSciNet review:
664045

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We work with the -term for spheres and the stable Moore space, given by the -algebra at odd primes. Writing and , we construct compatible maps and prove the Metastability Theorem: in homology induces an isomorphism for where stem degree, homological degree resulting from the bigrading of and . There is an operator corresponding to the Adams stable self-map of the Moore space and extends to . A corollary of the Metastability Theorem and the Localization Theorem of the second author is that the map induces an isomorphism on homology after inverting .

**[1]**J. F. Adams,*On the groups*. IV, Topology**5**(1966), 21-71. MR**0198470 (33:6628)****[2]**A. K. Bousfield et al.,*The**lower central series and the Adams spectral sequence*, Topology**5**(1966), 331-342. MR**0199862 (33:8002)****[3]**A. K. Bousfield and D. M. Kan,*The homotopy spectral sequence of a space with coefficients in a ring*, Topology**11**(1977), 79-106. MR**0283801 (44:1031)****[4]**J. Harper,*Rank**-spaces*, Canad. Math. Soc. Conf. Proc., Current Trends in Algebraic Topology, Western Ontario, 1981.**[5]**D. C. Johnson, H. R. Miller, W. S. Wilson and R. S. Zahler,*Boundary homomorphisms in the generalized Adams spectral sequence and the nontriviality of infinitely many**in stable homotopy*, Notas de Mat. y Symp., No. 1: Reunion Sobre Teoria de Homotopia, Northwestern Univ., Soc. Mat. Mex., 1975, pp. 47-59. MR**761720****[6]**A. Liulevicius,*Zeroes of the cohomology of the Steenrod algebra*, Proc. Amer. Math. Soc.**14**(1963), 972-976. MR**0157383 (28:617)****[7]**M. Mahowald,*On the double suspension homomorphism*, Trans. Amer. Math. Soc.**214**(1975), 169-178. MR**0438333 (55:11248)****[8]**H. R. Miller,*A localization theorem in homological algebra*, Math. Proc. Cambridge Philos. Soc.**84**(1978), 73-84. MR**0494105 (58:13036)****[9]**H. R. Miller and C. Wilkerson,*Vanishing lines for modules over the Steenrod algebra*, J. Pure Appl. Algebra**22**(1981), 293-308. MR**629336 (82m:55024)****[10]**M. C. Tangora,*Some remarks on the lambda algebra*, Geometric Applications of Homotopy Theory. II, (Proceedings, Evanston 1977), Lecture Notes in Math., vol. 658, Springer-Verlag, Berlin and New York, 1978, pp. 476-487. MR**513587 (80d:55024)****[11]**F. R. Cohen,*The unstable decomposition of**and its applications*(to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55T15,
55P40,
55Q25,
55Q45,
55U99

Retrieve articles in all journals with MSC: 55T15, 55P40, 55Q25, 55Q45, 55U99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0664045-2

Article copyright:
© Copyright 1982
American Mathematical Society