Resolvent operators for integral equations in a Banach space

Author:
R. C. Grimmer

Journal:
Trans. Amer. Math. Soc. **273** (1982), 333-349

MSC:
Primary 45N05; Secondary 34G10, 45D05

DOI:
https://doi.org/10.1090/S0002-9947-1982-0664046-4

MathSciNet review:
664046

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions are given which ensure the existence of a resolvent operator for an integrodifferential equation in a Banach space. The resolvent operator is similar to an evolution operator for nonautonomous differential equations in a Banach space. As in the finite dimensional case, this operator is used to obtain a variation of parameters formula which can be used to obtain results concerning the asymptotic behaviour of solutions and weak solutions.

**[1]**Goong Chen,*Control and stabilization for the wave equation in a bounded domain*, SIAM J. Control Optim.**17**(1979), no. 1, 66–81. MR**516857**, https://doi.org/10.1137/0317007**[2]**Goong Chen and Ronald Grimmer,*Semigroups and integral equations*, J. Integral Equations**2**(1980), no. 2, 133–154. MR**572484****[3]**-,*Integral equations as evolution equations*, J. Differential Equations (to appear).**[4]**Avner Friedman and Marvin Shinbrot,*Volterra integral equations in Banach space*, Trans. Amer. Math. Soc.**126**(1967), 131–179. MR**0206754**, https://doi.org/10.1090/S0002-9947-1967-0206754-7**[5]**R. C. Grimmer and R. K. Miller,*Existence, uniqueness, and continuity for integral equations in a Banach space*, J. Math. Anal. Appl.**57**(1977), no. 2, 429–447. MR**0440311**, https://doi.org/10.1016/0022-247X(77)90270-0**[6]**R. C. Grimmer and R. K. Miller,*Well-posedness of Volterra integral equations in Hilbert space*, J. Integral Equations**1**(1979), no. 3, 201–216. MR**540827****[7]**Ronald Grimmer and George Seifert,*Stability properties of Volterra integrodifferential equations*, J. Differential Equations**19**(1975), no. 1, 142–166. MR**0388002**, https://doi.org/10.1016/0022-0396(75)90025-X**[8]**S. I. Grossman and R. K. Miller,*Perturbation theory for Volterra integrodifferential systems*, J. Differential Equations**8**(1970), 457–474. MR**0270095**, https://doi.org/10.1016/0022-0396(70)90018-5**[9]**Morton E. Gurtin and A. C. Pipkin,*A general theory of heat conduction with finite wave speeds*, Arch. Rational Mech. Anal.**31**(1968), no. 2, 113–126. MR**1553521**, https://doi.org/10.1007/BF00281373**[10]**Kenneth B. Hannsgen,*The resolvent kernel of an integrodifferential equation in Hilbert space*, SIAM J. Math. Anal.**7**(1976), no. 4, 481–490. MR**0417861**, https://doi.org/10.1137/0507039**[11]**Kenneth B. Hannsgen,*Uniform 𝐿¹ behavior for an integrodifferential equation with parameter*, SIAM J. Math. Anal.**8**(1977), no. 4, 626–639. MR**0463848**, https://doi.org/10.1137/0508050**[12]**Tosio Kato,*Linear evolution equations of “hyperbolic” type*, J. Fac. Sci. Univ. Tokyo Sect. I**17**(1970), 241–258. MR**0279626****[13]**Tosio Kato,*Linear evolution equations of “hyperbolic” type. II*, J. Math. Soc. Japan**25**(1973), 648–666. MR**0326483**, https://doi.org/10.2969/jmsj/02540648**[14]**Richard K. Miller,*Volterra integral equations in a Banach space*, Funkcial. Ekvac.**18**(1975), no. 2, 163–193. MR**0410312****[15]**R. K. Miller,*An integro-differential equation for rigid heat conductors with memory*, J. Math. Anal. Appl.**66**(1978), no. 2, 313–332. MR**515894**, https://doi.org/10.1016/0022-247X(78)90234-2**[16]**Richard K. Miller,*Nonlinear Volterra integral equations*, W. A. Benjamin, Inc., Menlo Park, Calif., 1971. Mathematics Lecture Note Series. MR**0511193****[17]**Richard K. Miller and Robert L. Wheeler,*Asymptotic behavior for a linear Volterra integral equation in Hilbert space*, J. Differential Equations**23**(1977), no. 2, 270–284. MR**0440313**, https://doi.org/10.1016/0022-0396(77)90130-9**[18]**Richard K. Miller and Robert L. Wheeler,*Well-posedness and stability of linear Volterra integro-differential equations in abstract spaces*, Funkcial. Ekvac.**21**(1978), no. 3, 279–305. MR**540397****[19]**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Dept. Math. Lecture Note # 10, University of Maryland, 1974.**[20]**A. J. Pritchard and J. Zabczyk,*Stability and stabilizability of infinite-dimensional systems*, SIAM Rev.**23**(1981), no. 1, 25–52. MR**605439**, https://doi.org/10.1137/1023003**[21]**Hiroki Tanabe,*Equations of evolution*, Monographs and Studies in Mathematics, vol. 6, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. Translated from the Japanese by N. Mugibayashi and H. Haneda. MR**533824**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
45N05,
34G10,
45D05

Retrieve articles in all journals with MSC: 45N05, 34G10, 45D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0664046-4

Article copyright:
© Copyright 1982
American Mathematical Society