Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A symplectic Banach space with no Lagrangian subspaces


Authors: N. J. Kalton and R. C. Swanson
Journal: Trans. Amer. Math. Soc. 273 (1982), 385-392
MSC: Primary 58B20; Secondary 46B99
DOI: https://doi.org/10.1090/S0002-9947-1982-0664050-6
MathSciNet review: 664050
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct a symplectic Banach space $ (X,\Omega )$ which does not split as a direct sum of closed isotropic subspaces. Thus, the question of whether every symplectic Banach space is isomorphic to one of the canonical form $ Y \times {Y^ \ast }$ is settled in the negative. The proof also shows that $ \mathfrak{L}(X)$ admits a nontrivial continuous homomorphism into $ \mathfrak{L}(H)$ where $ H$ is a Hilbert space.


References [Enhancements On Off] (What's this?)

  • [1] F. F. Bonsall and J. Duncan, Complete normed algebras, Ergebnisse des Mathematik, Band 80, Springer-Verlag, New York, Heidelberg and Berlin, 1973. MR 0423029 (54:11013)
  • [2] P. Chernoff and J. Marsden, Properties of infinite dimensional Hamiltonian systems, Lecture Notes in Math., vol. 425, Springer-Verlag, Berlin and New York, 1974. MR 0650113 (58:31218)
  • [3] J. Duistermaat, On the Morse index theorem in variational calculus, Adv. in Math. 21 (1976), 173-195. MR 0649277 (58:31190)
  • [4] R. H. Herman, On the uniqueness of the ideals of compact and strictly singular operators, Studia Math. 29 (1968), 161-165. MR 0222657 (36:5707)
  • [5] W. B. Johnson, J. Lindenstrauss and G. Schechtman, On the relation between several notions of unconditional structure, Israel J. Math. 37 (1980), 120-129. MR 599307 (83f:46015)
  • [6] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problems, Trans. Amer. Math. Soc. 255 (1979), 1-30. MR 542869 (82g:46021)
  • [7] E. C. Lance, Quadratic forms on Banach spaces, Proc. London Math. Soc. (3) 25 (1972), 341-357. MR 0308742 (46:7856)
  • [8] R. C. Swanson, Linear symplectic structures on Banach spaces, Rocky Mountain J. Math. 10 (1980), 305-317. MR 575305 (81j:58014)
  • [9] -, Fredholm intersection theory and elliptic boundary deformation problems. I and II, J. Differential Equations 28 (1978), 189-219. MR 491049 (80i:58024a)
  • [10] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Adv. in Math. 6 (1971), 329-346. MR 0286137 (44:3351)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58B20, 46B99

Retrieve articles in all journals with MSC: 58B20, 46B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0664050-6
Keywords: Symplectic Banach space, isotropic, Lagrangian subspace, strictly singular operators, $ {C^ \ast }$-algebras
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society