Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotic analysis of Gaussian integrals. I. Isolated minimum points


Authors: Richard S. Ellis and Jay S. Rosen
Journal: Trans. Amer. Math. Soc. 273 (1982), 447-481
MSC: Primary 60G15; Secondary 28C20, 58D20, 81C35
DOI: https://doi.org/10.1090/S0002-9947-1982-0667156-0
MathSciNet review: 667156
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper derives the asymptotic expansions of a wide class of Gaussian function space integrals under the assumption that the minimum points of the action are isolated. Degenerate as well as nondegenerate minimum points are allowed. This paper also derives limit theorems for related probability measures which correspond roughly to the law of large numbers and the central limit theorem. In the degenerate case, the limits are non-Gaussian.


References [Enhancements On Off] (What's this?)

  • [M] S. Berger, Nonlinearity and functional analysis, Academic Press, New York and London, 1977. MR 0488101 (58:7671)
  • [S] Coleman, The uses of instantons, Lectures delivered at the 1977 International School of Subnuclear Physics, Ettore Majorana.
  • [M] D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time. III, Comm. Pure Appl. Math. 29 (1976), 389-461. MR 0428471 (55:1492)
  • [R] S. Ellis and C. M. Newman, The statistics of Curie-Weiss models, J. Statist. Phys. 19 (1978), 149-161. MR 0503332 (58:20112)
  • [R] S. Ellis and J. S. Rosen, (1) Asymptotics of certain random fields on a circle. Proc. Colloq. Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, Esztergom, Hungary (June, 1979). Ser. Colloq. Math. Soc. Jànos-Bolyai, vol. 27, North-Holland, Amsterdam, pp. 279-321. MR 712679 (84m:82016)
  • 1. (2) -, Laplace's method for Gaussian integrals with an application to statistical mechanics, Ann. Probab. 10 (1982), 47-66. (Also see Erratum (to appear).) MR 637376 (82m:60010)
  • [A] Erdélyi, Asymptotics expansions, Dover, New York, 1956.
  • [M] I. Freidlin, The action functional for a class of stochastic processes, Theor. Probab. Appl. 17 (1972), 511-515. MR 0307314 (46:6434)
  • [I] I. Gihman and A. V. Skorohod, The theory of stochastic processes. I, transl. by S. Kotz, Springer-Verlag, Berlin and New York, 1974. MR 0346882 (49:11603)
  • [I] C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, transl. by A. Feinstein, Transl. Math. Monos., vol. 24, Amer. Math. Soc., Providence, R.I., 1970. MR 0246142 (39:7447)
  • [G] Kallianpur and H. Oodaira, Freidlin-Wentzell type estimates for abstract Wiener spaces, Sankhyā Ser. A 40 (1978), 116-137. MR 546403 (83f:60063)
  • [M] Pincus, Gaussian processes and Hammerstein integral equations, Trans. Amer. Math. Soc. 134 (1968), 193-216. MR 0231439 (37:6994)
  • [B] S. Rajput, The support of Gaussian measures on Banach spaces, Theor. Probab. Appl. 17 (1972), 728-734. MR 0324737 (48:3086)
  • [F] Riesz and B. Sz.-Nagy, Functional analysis, transl. by L. F. Boron, Ungar, New York, 1955. MR 0071727 (17:175i)
  • [M] Schilder, Some asymptotic formulas for Wiener integrals, Trans. Amer. Math. Soc. 125 (1966), 63-85. MR 0201892 (34:1770)
  • [L] S. Schulman, Techniques and applications of path integration, Wiley, New York and Toronto, 1981. MR 601595 (82h:81003)
  • [B] Simon, Integration and quantum physics, Academic Press, New York and London, 1979. MR 544188 (84m:81066)
  • [A] V. Skorohod, Integration in Hilbert space, transl. by K. Wickwire, Springer-Verlag, Berlin and New York, 1974. MR 0466482 (57:6360)
  • [N] M. Temme (editor), Nonlinear analysis. Vol. 2, Mathematisch Centrum, Amsterdam, 1976. MR 0493536 (58:12531b)
  • [S] R. S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math. 19 (1966), 261-286. MR 0203230 (34:3083)
  • [A] D. Wentzell, Theorems on the action functional for Gaussian random functions, Theor. Probab. Appl. 17 (1972), 515-517.
  • [F] W. Wiegel, Path integral methods in statistical mechanics, Phys. Rep. 16 (1975), 57-114. MR 0424132 (54:12100)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60G15, 28C20, 58D20, 81C35

Retrieve articles in all journals with MSC: 60G15, 28C20, 58D20, 81C35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0667156-0
Keywords: Asymptotic expansion, Gaussian integral, nondegenerate minimum point, simply degenerate minimum point, multidegenerate minimum point
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society