Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Irreducible representations of $ A\sb{n}$ with a $ 1$-dimensional weight space


Authors: D. J. Britten and F. W. Lemire
Journal: Trans. Amer. Math. Soc. 273 (1982), 509-540
MSC: Primary 17B10
DOI: https://doi.org/10.1090/S0002-9947-1982-0667158-4
MathSciNet review: 667158
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we classify all irreducible linear representations of the simple Lie algebra $ {A_n}$ which admit a one-dimensional weight space with respect to some Cartan subalgebra $ H$ of $ {A_n}$. We first show that the problem is equivalent to determining all algebra homomorphisms from the centralizer of the Cartan subalgebra $ H$ in the universal enveloping algebra of $ {A_n}$ to the base field. We construct all such algebra homomorphisms and provide conditions under which two such algebra homomorphisms provide inequivalent irreducible representations of $ {A_n}$.


References [Enhancements On Off] (What's this?)

  • [1] D. Arnal and G. Pinczon, Sur certaines représentations de l'algèbre de Lie $ sl(2)$, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), 1369-1372. MR 0277577 (43:3310)
  • [2] G. Benkart, private communication.
  • [3] R. Block, Classification of the irreducible representations of $ sl(2,C)$, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 247-250. MR 513751 (80i:17008)
  • [4] I. Bouwer, Standard representations of simple Lie algebras, Canad. J. Math. 20 (1968), 344-361. MR 0224746 (37:345)
  • [5] J. Dixmier, Algebres enveloppantes, Gauthier-Villars, Paris, 1974. MR 0498737 (58:16803a)
  • [6] E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111-243.
  • [7] I. Gel'fand and M. Graev, Finite dimensional irreducible representations of the unitary and full linear groups and related special functions, Amer. Math. Soc. Transl. 64 (1967), 116-146.
  • [8] J. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math., No. 9, Springer-Verlag, New York, 1972. MR 0323842 (48:2197)
  • [9] F. Lemire, Irreducible representations of a simple Lie algebra admitting a one-dimensional weight space, Proc. Amer. Math. Soc. 19 (1968), 1161-1164. MR 0231872 (38:200)
  • [10] -, Note on weight spaces of irreducible linear representations, Canad. Math. Bull. 11 (1968), 399-404. MR 0235073 (38:3385)
  • [11] -, Weight spaces and irreducible representations of simple Lie algebras, Proc. Amer. Math. Soc. 22 (1969), 192-197. MR 0243001 (39:4326)
  • [12] -, One dimensional representations of the cycle subalgebra of a semisimple Lie algebra, Canad. Math. Bull. 13 (1970), 463-467. MR 0281765 (43:7480)
  • [13] -, An irreducible representation of $ sl(2)$, Canad. Math. Bull. 17 (1974), 63-66.
  • [14] -, A new family of irreducible representations of $ {A_n}$, Canad. Math. Bull. 18 (1975), 543-546. MR 0422365 (54:10355)
  • [15] F. Lemire and M. Pap, $ H$-finite representations of simple Lie algebras, Canad. J. Math. 30 (1979), 1084-1106. MR 546961 (81c:17014)
  • [16] A. van den Hombergh, Sur des suites de racines, dont la somme des termes est nulle, Bull. Soc. Math. France 102 (1974), 353-364. MR 0366998 (51:3243)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B10

Retrieve articles in all journals with MSC: 17B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0667158-4
Keywords: Irreducible representations, weight space decomposition, Harish-Chandra homomorphism
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society