Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A general principle for limit theorems in finitely additive probability


Author: Rajeeva L. Karandikar
Journal: Trans. Amer. Math. Soc. 273 (1982), 541-550
MSC: Primary 60F05; Secondary 60G07
DOI: https://doi.org/10.1090/S0002-9947-1982-0667159-6
MathSciNet review: 667159
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we formulate and prove a general principle which enables us to deduce limit theorems for sequences of independent random variables in a finitely additive setting from their analogues in the conventional countably additive setting.


References [Enhancements On Off] (What's this?)

  • [1] D. J. Aldous, Limit theorems for sub-sequences of arbitrarily dependent sequences of random variables, Z. Wahrsch. Verw. Gebeite 40 (1977), 59-82. MR 0455090 (56:13330)
  • [2] P. Billingsley, Convergence of probability measure, Wiley, New York, 1968. MR 0233396 (38:1718)
  • [3] L. Breiman, Probability, Addison-Wesley, California, 1968. MR 0229267 (37:4841)
  • [4] R. Chen, A finitely additive version of Kolmogorov's law of iterated logarithm, Israel J. Math. 23 (1976), 209-220. MR 0407947 (53:11714)
  • [5] -, On almost sure convergence in a finitely additive setting, Z. Wahrsch. Verw. Gebiete 37 (1977), 341-356. MR 571674 (82a:60048)
  • [6] L. E. Dubins, On Lebesgue like extensions of finitely additive measures, Ann. Probab. 2 (1974), 456-463. MR 0357724 (50:10192)
  • [7] L. E. Dubins and L. J. Savage, How to gamble if you must: Inequalities for stochastic processes, McGraw-Hill, New York, 1965. MR 0236983 (38:5276)
  • [8] M. Loeve, Probability theory, 3rd ed., Van Nostrand, Princeton, N. J., 1963. MR 0203748 (34:3596)
  • [9] J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Francisco, Calif., 1965. MR 0198505 (33:6660)
  • [10] R. A. Purves and W. D. Sudderth, Some finitely additive probability, Ann. Probab. 4 (1976), 259-276. MR 0402888 (53:6702)
  • [11] S. Ramakrishnan, Central limit theorems in a finitely additive setting (preprint). MR 730717 (85j:60004)
  • [12] V. Strassen, An invariance principle for the law of iterated logarithm, Z. Wahrsch. Verw. Gebiete 3 (1964), 211-226. MR 0175194 (30:5379)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60F05, 60G07

Retrieve articles in all journals with MSC: 60F05, 60G07


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0667159-6
Keywords: Finitely additive probability, strategy, invariance principles
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society