Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

A characterization of Fourier and Radon transforms on Euclidean space


Author: Alexander Hertle
Journal: Trans. Amer. Math. Soc. 273 (1982), 595-607
MSC: Primary 42B10; Secondary 44A15
MathSciNet review: 667162
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a continuous operator behaving under rotations, positive dilations, and translations like the Fourier or the Radon transform on $ {{\mathbf{R}}^n}$ must be a constant multiple of one of these transforms. We prove this characterization for various function spaces, e.g. we characterize the Fourier transform as an operator acting on spaces between $ \mathfrak{D}({{\mathbf{R}}^n})$ and $ \mathfrak{D}'({{\mathbf{R}}^n})$. On the other hand, a counterexample shows that the Radon transform is not determined by its behaviour above as an operator from $ \mathfrak{D}({{\mathbf{R}}^n})$ to $ \mathfrak{D}'({S^{n - 1}} \times {\mathbf{R}})$. But we can characterize the Radon transform as an operator acting between $ \mathfrak{D}({{\mathbf{R}}^n})$ and $ {\mathfrak{D}'_{{L^1}}}({S^{n - 1}} \times {\mathbf{R}})$, the space of integrable distributions on $ {S^{n - 1}} \times {\mathbf{R}}$. In the special case $ n = 1$, our methods sharpen results of J. L. B. Cooper and H. Kober, who characterize the Fourier transform as an operator from $ {L^p}({\mathbf{R}})$ into $ {L^p}^\prime ({\mathbf{R}}),1 \leqslant p \leqslant 2$.


References [Enhancements On Off] (What's this?)

  • [1] J. L. B. Cooper, Functional equations for linear transformations, Proc. London Math. Soc. (3) 20 (1970), 1–32. MR 0254663 (40 #7870)
  • [2] W. F. Donoghue, Distributions and Fourier transforms, Academic Press, New York, 1969.
  • [3] Lars Gȧrding, Transformation de Fourier des distributions homogènes, Bull. Soc. Math. France 89 (1961), 381–428 (French). MR 0149195 (26 #6687)
  • [4] I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Translated by Eugene Saletan, Academic Press, New York-London, 1964. MR 0166596 (29 #3869)
  • [5] I. M. Gel′fand, M. I. Graev, and N. Ya. Vilenkin, Generalized functions. Vol. 5: Integral geometry and representation theory, Translated from the Russian by Eugene Saletan, Academic Press, New York-London, 1966. MR 0207913 (34 #7726)
  • [6] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 1955 (1955), no. 16, 140 (French). MR 0075539 (17,763c)
  • [7] G. H. Hardy, The resultant of two Fourier kernels, Proc. Cambridge Philos. Soc. 31 (1935), 1-6.
  • [8] A. Hertle, Zur Radon-Transformation von Funktionen und Massen, Thesis, Erlangen, 1979.
  • [9] Konrad Jacobs, Measure and integral, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Probability and Mathematical Statistics; With an appendix by Jaroslav Kurzweil. MR 514702 (80k:28002)
  • [10] H. Kober, On functional equations and bounded linear transformations, Proc. London Math. Soc. (3) 14 (1964), 495–519. MR 0166562 (29 #3835)
  • [11] Donald Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math. 19 (1966), 49–81. MR 0190652 (32 #8064)
  • [12] M. Plancherel, Quelques remarques à propos d'une note de G. H. Hardy: the resultant of two Fourier kernels, Proc. Cambridge Philos. Soc. 33 (1937), 413-418.
  • [13] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
  • [14] -, Produits tensoriels topologiques d'espaces vectoriels topologiques, Séminaire Schwartz, Année 1953/1954, Paris 1954.
  • [15] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B10, 44A15

Retrieve articles in all journals with MSC: 42B10, 44A15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1982-0667162-6
PII: S 0002-9947(1982)0667162-6
Keywords: Fourier transform, Radon transform, functional equations
Article copyright: © Copyright 1982 American Mathematical Society