Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The structure of pseudo-inverse semigroups


Author: F. Pastijn
Journal: Trans. Amer. Math. Soc. 273 (1982), 631-655
MSC: Primary 20M10
DOI: https://doi.org/10.1090/S0002-9947-1982-0667165-1
MathSciNet review: 667165
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A regular semigroup $ S$ is called a pseudo-inverse semigroup if $ eSe$ is an inverse semigroup for each $ e = {e^2} \in S$. We show that every pseudo-inverse semigroup divides a semidirect product of a completely simple semigroup and a semilattice. We thereby give a structure theorem for pseudo-inverse semigroups in terms of groups, semilattices and morphisms. The structure theorem which is presented here generalizes several structure theorems which have been given for particular classes of pseudo-inverse semigroups by several authors, and thus contributes to a unification of the theory.


References [Enhancements On Off] (What's this?)

  • [1] K. Byleen, The structure of regular and inverse semigroups, Dissertation, Univ. of Nebraska-Lincoln, 1977.
  • [2] -, Spirals of idempotents from $ P$-semigroups, Semigroup Forum 17 (1979), 95-100. MR 527211 (80g:20069)
  • [3] K. Byleen, J. Meakin and F. Pastijn, The fundamental four-spiral semigroup, J Algebra 54 (1978), 6-26. MR 511454 (80c:20081)
  • [4] -, Building bisimple idempotent-generated semigroups, J. Algebra 65 (1980), 60-83. MR 578795 (82c:20103)
  • [5] A. H. Clifford, The fundamental representation of a regular semigroup, Preprints and Lecture Notes in Mathematics, Tulane Univ., 1974. MR 0450434 (56:8728)
  • [6] -, The fundamental representation of a regular semigroup, Semigroup Forum 10 (1975), 84-92. MR 0393312 (52:14122)
  • [7] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vols. I, II, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1961, 1967. MR 0132791 (24:A2627)
  • [8] R. L. Gantos, Semilattices of bisimple inverse semigroups, Quart. J. Math. Oxford 22 (1971), 379-393. MR 0286919 (44:4126)
  • [9] T. E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208. MR 0249527 (40:2772)
  • [10] D. W. Hardy and Y. Tirasupa, Semilattices of proper inverse semigroups, Semigroup Forum 13 (1976), 29-36. MR 0417320 (54:5376)
  • [11] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976. MR 0466355 (57:6235)
  • [12] G. Lallement, Congruences et équivalences de Green sur un demi-groupe régulier, C. R. Acad. Sci. Paris Sér. A. 262 ( 1966), 613-616. MR 0207872 (34:7686)
  • [13] -, Demi-groupes réguliers, Ann. Mat. Pura Appl. 77 (1967), 43-130. MR 0225915 (37:1505)
  • [14] -, Structure theorems for regular semigroups, Semigroup Forum 4 (1972), 95-123. MR 0296199 (45:5260)
  • [15] -, Some remarks on the four-spiral semigroup, Semigroup Forum 18 (1979), 341-345. MR 552377 (81e:20065)
  • [16] G. Lallement and M. Petrich, Décompositions $ I$-matricielles d'un demi-groupe, J. Math. Pures Appl. 45 (1966), 67-117. MR 0197600 (33:5765)
  • [17] -, A generalization of the Rees theorem in semigroups, Acta Sci. Math. (Szeged) 30 (1969), 113-132. MR 0241559 (39:2899)
  • [18] -, Structure d'une classe de demi-groupes réguliers, J. Math. Pures Appl. 48 ( 1969), 345-397. MR 0258993 (41:3638)
  • [19] -, Extensions of a Brandt semigroup by another, Canad. J. Math. 22 (1970), 974-983. MR 0269763 (42:4658)
  • [20] E. S. Ljapin, Semigroups, Amer. Math. Soc., Providence, R. I., 1974.
  • [21] D. B. McAlister, Groups, semilattices and inverse semigroups, Trans. Amer. Math. Soc. 192 (1974), 227-244. MR 0357660 (50:10128)
  • [22] -, Groups, semilattices and inverse semigroups. II, Trans. Amer. Math. Soc. 196 (1974), 351-370.
  • [23] J. Meakin, The structure mappings on a regular semigroup, Proc. Edinburgh Math. Soc. 21 (1978), 135-142. MR 514900 (80c:20084)
  • [24] J. Meakin and F. Pastijn, The structure of pseudo-semilattices, Algebra Universalis 13 (1981), 355-372. MR 631728 (82k:20100)
  • [25] J. Meakin and K. S. S. Nambooripad, Coextensions of regular semigroups by rectangular bands. I, Trans. Amer. Math. Soc. 269 (1982), 197-224. MR 637035 (83d:20046)
  • [26] K. S. S. Nambooripad, Structure of regular semigroups, Thesis, Univ. of Kerala, 1973.
  • [27] -, Structure of regular semigroups. I. Fundamental regular semigroups, Semigroup Forum 9 (1975), 354-363. MR 0376920 (51:13095)
  • [28] -, Structure of regular semigroups. II. The general case, Semigroup Forum 9 (1975), 364-371. MR 0376921 (51:13096)
  • [29] -, Pseudo-semilattices and biordered sets, I, Simon Stevin 55 (1981), 103-110. MR 635096 (83d:06003)
  • [30] -, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. (to appear).
  • [31] L. O'Carroll, Embedding theorems for proper inverse semigroups, J. Algebra 42 (1976), 26-40. MR 0424976 (54:12934)
  • [32] F. Pastijn, Embedding semigroups in semibands, Semigroup Forum 14 (1977), 247-263. MR 0453900 (56:12153)
  • [33] -, On Schein's structure theorem for proper bands of monoids (submitted).
  • [34] -, Maximal subsemilattices of simple pseudo-inverse semigroups, Simon Stevin 53 (1979), 121-130. MR 536751 (80f:20067)
  • [35] -, Rectangular bands of inverse semigroups, Simon Stevin 56 (1982), 1-97. MR 662981 (83i:20063)
  • [36] M. Petrich, A construction and a classification of bands, Math. Nachr. 48 (1971), 263-274. MR 0294542 (45:3612)
  • [37] -, The structure of completely regular semigroups, Trans. Amer. Math. Soc. 189 (1974), 211-236. MR 0330331 (48:8668)
  • [38] M. Petrich, Lectures in semigroups, Wiley, London, 1977. MR 0466270 (57:6150)
  • [39] G. B. Preston, Matrix representations of inverse semigroups, J. Austral. Math. Soc. 2 (1969), 29-61. MR 0244411 (39:5726)
  • [40] D. Rees, On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400. MR 0002893 (2:127g)
  • [41] B. M. Schein, Pseudo-semilattices and pseudo-lattices, Izv. Vysš. Učebn. Zaved Matematika 2(117) (1972), 81-94. (Russian) MR 0306076 (46:5203)
  • [42] -, Bands of monoids, Acta Sci. Math. (Szeged) 36 (1974), 145-154. MR 0354915 (50:7392)
  • [43] -, A new proof for the McAlister "$ P$-Theorem", Semigroup Forum 10 (1975), 185-188. MR 0379716 (52:621)
  • [44] O. Steinfeld, On semigroups which are unions of completely 0-simple semigroups, Czechoslovak Math. J. 16 (91) (1966), 63-69. MR 0188328 (32:5767)
  • [45] A. K. Suschkewitsch, Uber die endlichen Gruppen ohne das Gesetz der eindeutigen Unkehrbarkeit, Math. Ann. 99 (1928), 30-50. MR 1512437
  • [46] P. S. Venkatesan, On decompositions of semigroups with zero, Math. Z. 92 (1966), 164-174. MR 0191989 (33:216)
  • [47] R. J. Warne, Extension of completely 0-simple semigroups by completely 0-simple semigroups, Proc. Amer. Math. Soc. 17 (1966), 524-526. MR 0197609 (33:5774)
  • [48] M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392. MR 0227302 (37:2887)
  • [49] H. R. Krishna Yengar, Semilattices of bisimple inverse semigroups, Semigroup Forum 2 (1971), 44-48. MR 0285643 (44:2861)
  • [50] Y. Zalcstein, Locally testable semigroups, Semigroup Forum 5 (1973), 216-227. MR 0320194 (47:8733)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20M10

Retrieve articles in all journals with MSC: 20M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0667165-1
Keywords: Pseudo-inverse semigroup, proper inverse semigroup, rectangular band of inverse semigroups, pseudo-semilattice, semilattice, order automorphism
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society